[1]钟怀兵,熊伟丽.一种带奇异点检测和补偿的GPR在线软测量方法[J].南京理工大学学报(自然科学版),2017,41(04):503.[doi:10.14177/j.cnki.32-1397n.2017.41.04.016]
 Zhong Huaibing,Xiong Weili.Online soft sensor method based on GPR with test andcompensation for singular point[J].Journal of Nanjing University of Science and Technology,2017,41(04):503.[doi:10.14177/j.cnki.32-1397n.2017.41.04.016]
点击复制

一种带奇异点检测和补偿的GPR在线软测量方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年04期
页码:
503
栏目:
出版日期:
2017-08-31

文章信息/Info

Title:
Online soft sensor method based on GPR with test andcompensation for singular point
文章编号:
1005-9830(2017)04-0503-08
作者:
钟怀兵1熊伟丽12
江南大学 1.轻工过程先进控制教育部重点实验室; 2.物联网工程学院,江苏 无锡 214122
Author(s):
Zhong Huaibing1Xiong Weili12
1.Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education; 2.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
关键词:
高斯过程回归 辅助模型 奇异点 拉依达准则 软测量
Keywords:
Gaussian process regression auxiliary model singular point pauta criterion soft sensor
分类号:
TP391.9
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.016
摘要:
针对软测量方法实际应用中查询样本可能出现奇异点这一问题,提出一种带奇异点检测和补偿的高斯过程回归(Gaussian process regression,GPR)在线软测量方法。该方法首先对训练样本利用高斯过程回归方法进行建模,得到软测量模型; 然后对新来查询样本采用改进拉依达准则进行奇异点检测,当新来查询样本被确定为奇异点时,利用辅助模型进行修补,然后再利用软测量模型对修补后查询样本点进行预测; 否则,直接对新来查询样本点使用软测量模型进行预测,此方法能够有效确保新来查询样本点的有效性。通过对实际硫回收过程的数据进行实验仿真,进一步验证了所提方法的有效性。
Abstract:
To handle the problem of the singular query sample which is encountered in the application of soft sensor for the practical industrial processes,an online soft sensor method considering the test and compensation for the singular point is proposed in this paper.A soft sensor model can be built based on the Gaussian process regression(GPR)approach using the training dataset.The pauta criterion is improved to test the new query samples with higher degree of accuracy.If the new query sample is determined as a singular point,an auxiliary model based method is provided to repair the singular point.The renewed query sample is predicted.Otherwise,the GPR soft sensor model can be used to estimate the new query sample directly.It can ensure the validity of the new query sample point.The effectiveness of the proposed method is verified through the simulation experiment on a real sulfur recovery unit treatment process.

参考文献/References:

[1] Souza F,Rui A,Mendes J.Review of soft sensor methods for regression applications[J]. Chemometrics & Intelligent Laboratory Systems,2016,152:69-79.
[2]Kadlec P,Gabrys B,Strandt S.Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering,2009,33(4):795-814.
[3]曹鹏飞,罗雄麟.化工过程软测量建模方法研究进展[J]. 化工学报,2013,64(3):788-800.
Cao Pengfei,Luo Xionglin.Modeling of soft sensor for chemical process[J]. Journal of Chemical Industry and Engineering,2013,64(3):788-800.
[4]Wang D,Liu J,Srinivasan R.Data-driven soft sensor approach for quality prediction in a refining process[C]//International Conference on Industrial Informatics.Osaka,Japan:IEEE,2010:230-235.
[5]俞金寿.软测量技术及其应用[J]. 自动化仪表,2008,29(1):1-7.
Yu Jinshou.Soft sensing technology and its application[J]. Process Automation Instrumentation,2008,29(1):1-7.
[6]于霜,刘国海,梅从立,等. 生物发酵过程中VIP优化神经网络逆系统的软测量方法[J]. 南京理工大学学报,2015,39(4):447-452.
Yu Shuang,Liu Guohai,Mei Congli,et al. VIP optimal neural network inverse system soft sensing method in bio-fermentation process[J]. Journal of Nanjing University of Science and Technology,2015,39(04):447-452.
[7]Kaneko H,Funatsu K.Ensemble locally-weighted partial least squares as a just-in-time modeling method[J]. Aiche Journal,2015,62(3):717-725.
[8]Lv Y,Yang T,Liu J.An adaptive least squares support vector machine model with a novel update for NOx emission prediction[J]. Chemometrics & Intelligent Laboratory Systems,2015,145:103-113.
[9]熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J]. 系统仿真学报,2005,17(4):793-794,800.
Xiong Zhihua,Zhang Jicheng,Shao Huihe.GP-based soft sensor modeling[J]. Journal of System Simulation,2005,17(4):793-794,800.
[10]Xiong W L,Zhang W,Xu B G,et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering,2016,90:260-267.
[11]Liu Y,Gao Z.Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models[J]. Journal of Applied Polymer Science,2015,132(6):41432(1-9).
[12]Chen J,Jie Y,Zhang Y.Multivariate video analysis and gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions[J]. Computers & Chemical Engineering,2014,64(1):13-23.
[13]孙茂伟,杨慧中.基于改进仿射传播聚类的多模型软测量建模及应用[J]. 南京理工大学学报,2016,40(2):204-211.Sun Maowei,Yang Huizhong.Multi-model soft-sensor modeling based on improved affinity propagation clustering algorithm and application[J]. Journal of Nanjing University of Science and Technology,2016,40(2):204-211.
[14]Ahmed F,Cho H J,Jin K K,et al. A real-time model based on least squares support vector machines and output bias update for the prediction of NOx emission from coal-fired power plant[J]. Korean Journal of Chemical Engineering,2015,32(6):1029-1036.
[15]姚熊亮,陈海龙,赵新,等. 基于拉依达准则的舰载设备抗冲击薄弱环节判定[J]. 中国舰船研究,2007,2(5):10-14.
Yao Xiongliang,Chen Hailong,Zhao Xin,et al. Weak link determination of anti-shock performance of shipboard equipments based on pauta criterio[J]. Chinese Journal of Ship Research,2007,2(5):10-14.
[16]郑峰,王睿,宦克为,等. 粳米近红外光谱模型中基于拉依达准则的异常值剔除方法[J]. 光谱学与光谱分析,2012,32(10):133-134.
Zheng Feng,Wang Rui,Huan Kewei,et al. Eliminating abnormal values in keng-rice NIRS modeling based on pauTa criterion[J]. Spectroscopy and Spectral Analysis,2012,32(10):133-134.
[17]江羡珍,马国栋,简金宝.Wolfe线搜索下一个新的全局收敛共轭梯度法[J]. 工程数学学报,2011,28(6):779-786.
Jiang Xianzhen,Ma Guodong,Jian Jinbao.A new globally convergent conjugate gradient method with wolfe line search[J]. Chinese Journal of Engineering Mathematics,2011,28(6):779-786.
[18]Jin H,Chen X,Wang L,et al.Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research,2015,54(30),7320-7345.
[19]Liu Y,Chen J.Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes[J]. Journal of Process Control,2013,23(6):793-804.
[20]熊伟丽,张伟,徐保国.一种基于EGMM的高斯过程回归软测量建模[J]. 信息与控制,2016,45(1):14-19.
Xiong Weili,Zhang Wei,Xu Baoguo.A soft sensor modeling method based on EGMM using gaussian process regression[J]. Information and Control,2016,45(1):14-19.
[21]Fortuna L G,Graziani S,Rizzo A,et al. Soft sensors for monitoring and control of industrial processes[M]. Berlin:Springer-Verlag,2007.

相似文献/References:

[1]贾 立,杨爱华,邱铭森.基于辅助模型递推最小二乘法的Hammerstein模型 多信号源辨识[J].南京理工大学学报(自然科学版),2014,38(01):34.
 Jia Li,Yang Aihua,Qiu Minsen.Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model[J].Journal of Nanjing University of Science and Technology,2014,38(04):34.

备注/Memo

备注/Memo:
收稿日期:2016-09-06 修回日期:2017-01-12基金项目:国家自然科学基金(21206053,21276111); 江苏省“六大人才高峰”计划资助项目(2013-DZXX-043); 江苏高校优势学科建设工程资助项目(PAPD)
作者简介:钟怀兵(1989-),男,硕士生,主要研究方向:工业过程建模,E-mail:zhblbottle@163.com; 通讯作者:熊伟丽(1978-),女,博士,教授,硕士生导师,主要研究方向:复杂工业过程建模及优化、智能优化算法及应用,E-mail:greenpre@163.com。
引文格式:钟怀兵,熊伟丽.一种带奇异点检测和补偿的GPR在线软测量方法[J].南京理工大学学报,2017,41(4):503-510.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-08-31