[1]王 齐,陈 娟,李全善,等.改进生物地理学优化算法及其在PID控制器参数中的优化[J].南京理工大学学报(自然科学版),2017,41(04):519.[doi:10.14177/j.cnki.32-1397n.2017.41.04.018]
 Wang Qi,Chen Juan,Li Quanshan,et al.PID parameter optimization based on improvedbiogeography-based optimization algorithm[J].Journal of Nanjing University of Science and Technology,2017,41(04):519.[doi:10.14177/j.cnki.32-1397n.2017.41.04.018]
点击复制

改进生物地理学优化算法及其在PID控制器参数中的优化()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年04期
页码:
519
栏目:
出版日期:
2017-08-31

文章信息/Info

Title:
PID parameter optimization based on improvedbiogeography-based optimization algorithm
文章编号:
1005-9830(2017)04-0519-07
作者:
王 齐1陈 娟1李全善2刘继超3
1.北京化工大学 信息科学与技术学院,北京 100029; 2.北京世纪隆博科技有限责任公司,北京 100029; 3.燕京理工学院,河北 三河 065201
Author(s):
Wang Qi1Chen Juan1Li Quanshan2Liu Jichao3
1.School of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China; 2.Beijing Century Robust Technology Co.Ltd.,Beijing 100029,China; 3.Yanching Institute of Technology,Sanhe 065201,China
关键词:
人工驯养 生物地理学 优化算法 参数优化
Keywords:
artificial domestication biogeography optimization algorithm parameter optimization
分类号:
TP273.24
DOI:
10.14177/j.cnki.32-1397n.2017.41.04.018
摘要:
为了解决生物地理学优化(Biogeography-based optimization,BBO)算法在收敛过程容易陷入早熟的问题,提出了一种改进的生物地理学优化(Improved biogeography-based optimization,I-BBO)算法。该算法是在生物地理学的基础上,引入了人工驯养的概念,把人工驯化与生物地理学算法相结合,解决了BBO算法在后期存在搜索动力不足的问题。仿真实验表明:I-BBO算法提高了物种的多样性,增强了算法的搜索能力,加快了寻优速度。将该文提出的I-BBO算法应用到比例积分微分(Proportion integration differentiation,PID)控制器的参数整定中,通过两个例子的仿真,结果表明,I-BBO算法在优化PID控制器参数上比原有的BBO算法更加迅速。
Abstract:
An improved biogeography-based optimization(I-BBO)algorithm is presented in order to solve the problem of biogeography-based optimization(BBO)algorithm,which has the phenomenon of easily precocious convergence in the process of optimization.Based on the biogeography,the algorithm introduces the concept of artificial domestication and the integrating artificial domestication in biogeography algorithm to solve the problem of the less ability to explore in the end of the process.Simulation experiments prove that the I-BBO algorithm improves the species diversity and enhances the search ability of the algorithm.The I-BBO algorithm is applied to set the proportion-integration-differentiation(PID)controller parameters.The simulation results of the two examples show that the I-BBO algorithm is more rapid than the BBO algorithm in the PID controller parameters optimization.

参考文献/References:

[1] Dan Simon.Biogeography-based optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(6):702-713.
[2]Ma H P.Analysis of the behavior of migration models for biogeography-based optimization[J].Information Sciences,2010,180(18):3444-3464.
[3]Gong W Y,Cai Z H,Ling C X,et al.A real-coded biogeography-based optimization with neighborhood search operator[J].Applied Mathematics and Computation,2010,216(9):2749-2758.
[4]Simon D.A probabilistic analysis of a simplified biogeography-based optimization algorithm[J].Evolutionary Computation,2011,19(2):167-188.
[5]Simon D,Ergezer M,Du D.Population distributions in biogeography-based optimization algorithms with elitism[C]//Proceedings of the IEEE Conference on Systems,Man,and Cybernetics.Texas:San Antonio,2009:1017-1022.
[6]Panchal V K,Singh P,Kaur N,et al.Biogeography based satellite image classification[J].International Journal of Computer Science and Information Security(IJCSIS),2009,6:269-274.
[7]李翔硕,王淳.基于生物地理学优化算法的输电网络规划[J].电网技术,2013,37(2):477-481.
Li Xiangsuo,Wang Chun.Application of biogeography-based optimization in transmission network planning[J].Power System Technology,2013,37(2):477-481.
[8]薛虹,韩璞.一种改进的BBO算法及在热工PID优化中的应用[J].华北电力大学学报,2016,43(1):81-85.
Xue Hong,Han Pu.Improved BBO algorithm and its application in PID optimization of thermal system[J].Journal of North China Electric Power University,2016,43(1):81-85.
[9]陈基漓.基于高斯变异的生物地理学优化模型[J].计算机仿真,2013,30(7):292-325.
Chen Jili.Biogeography-based optimization model based on Gaussian mutation[J].Computer Simulation,2013,30(7):292-325.
[10]韩松,潘立武.改进生物地理学算法及其应用[J].人民黄河,2014,36(2):120-124.
Han Song,Pan Liwu.An improved biogeography-based optimization algorithm and its application[J].Yellow River,2014,36(2):120-124.
[11]Zhao Shancen,Zheng Fengya.Impacts of nucleotide fixation during soybean domestication and improve-ment[J].BMC Plant Biology,2015,15:463.
[12]杨智,陈颖.改进粒子群算法及其在PID整定中的应用[J].控制工程,2016,23(2):161-165.
Yang Zhi,Chen Ying.Improved particle swarm optimization and its application in PID tuning[J].Control Engineering of China,2016,23(2):161-165.
[13]Lu J,Yang C S,Peng B,et al.Self-tuning PID control scheme with swarm intelligence based on support vector machine[C]//IEEE International Conference on Mechatronics and Automation(ICMA).Washington DC,USA:IEEE,2014:1554-1558.
[14]Sayedain S,Boiko I.Optimal PI tuning rules for flow loop based on modified relay feedback test[C]//2011 50th IEEE Conference on Decision and Control and European Control.Orlando,FL,USA:IEEE,2011:7063-7068.
[15]方红庆.一种改进粒子群算法及其在水轮机控制器PID参数优化中的应用[J].南京理工大学学报,2008,32(3):274-278.
Fang Hongqing.An improved particle swarm optimization algorithm and its application in water turbine PID controller parameters optimization[J].Journal of Nanjing University of Science and Technology,2008,32(3):274-278.
[16]张培林,钱林方,曹建军,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报,2009,33(4):464-468.
Zhang Peilin,Qian Linfang,Cao Jianjun,et al.Parameter optimization of support vector machine based on ant colony optimization algorithm[J].Journal of Nanjing University of Science and Technology,2009,33(4):464-468.
[17]Beyer H.The theory of evolution strategies[M].New York:Springer,2001.
[18]李国成,李娟,周本达.几种混沌布谷鸟搜索算法的优化性能比较与仿真[J].贵州师范大学学报(自然科学版),2015,33(2):66-71.
Li Guocheng,Li Juan,Zhou Benda.Performance comparison and stimulation of chaotic cuckoo search algorithms[J].Journal of Guizhou Normal University(Natural Sciences),2015,33(2):66-71.
[19]Eberhart R,Shi Y.Special issue on particle swarm optimization[J].IEEE Trans Evol Comput,2004,8(3):201-228.
[20]Back T.Evolutionary algorithms in theory and practice[M].Oxford,U.K.:Oxford Univ Press,1996.
[21]Yao X,Liu Y,Lin G.Evolutionary programming made faster[J].IEEE Trans Evol Comput,1999,3:82-102.
[22]Cai Z,Wang Y.A multi objective optimization-based evolutionary algorithm for constrained optimization[J].IEEE Trans Evol Comput,2006,10:658-675.

备注/Memo

备注/Memo:
收稿日期:2016-10-10 修回日期:2017-01-16基金项目:国家自然科学基金(21376014)
作者简介:王齐(1990-),男,硕士生,主要研究方向:系统辨识、先进控制,E-mail:wangqi_buct@foxmail.com; 通讯作者:陈娟(1961-),女,教授,博导,主要研究方向:控制理论及先进控制方法、系统辨识建模等,E-mail:jchen@mail.buct.edu.cn。
引文格式:王齐,陈娟,李全善,等.改进生物地理学优化算法及其在PID控制器参数中的优化[J].南京理工大学学报,2017,41(4):519-525.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-08-31