参考文献/References:
[1] Dan Simon.Biogeography-based optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(6):702-713.
[2]Ma H P.Analysis of the behavior of migration models for biogeography-based optimization[J].Information Sciences,2010,180(18):3444-3464.
[3]Gong W Y,Cai Z H,Ling C X,et al.A real-coded biogeography-based optimization with neighborhood search operator[J].Applied Mathematics and Computation,2010,216(9):2749-2758.
[4]Simon D.A probabilistic analysis of a simplified biogeography-based optimization algorithm[J].Evolutionary Computation,2011,19(2):167-188.
[5]Simon D,Ergezer M,Du D.Population distributions in biogeography-based optimization algorithms with elitism[C]//Proceedings of the IEEE Conference on Systems,Man,and Cybernetics.Texas:San Antonio,2009:1017-1022.
[6]Panchal V K,Singh P,Kaur N,et al.Biogeography based satellite image classification[J].International Journal of Computer Science and Information Security(IJCSIS),2009,6:269-274.
[7]李翔硕,王淳.基于生物地理学优化算法的输电网络规划[J].电网技术,2013,37(2):477-481.
Li Xiangsuo,Wang Chun.Application of biogeography-based optimization in transmission network planning[J].Power System Technology,2013,37(2):477-481.
[8]薛虹,韩璞.一种改进的BBO算法及在热工PID优化中的应用[J].华北电力大学学报,2016,43(1):81-85.
Xue Hong,Han Pu.Improved BBO algorithm and its application in PID optimization of thermal system[J].Journal of North China Electric Power University,2016,43(1):81-85.
[9]陈基漓.基于高斯变异的生物地理学优化模型[J].计算机仿真,2013,30(7):292-325.
Chen Jili.Biogeography-based optimization model based on Gaussian mutation[J].Computer Simulation,2013,30(7):292-325.
[10]韩松,潘立武.改进生物地理学算法及其应用[J].人民黄河,2014,36(2):120-124.
Han Song,Pan Liwu.An improved biogeography-based optimization algorithm and its application[J].Yellow River,2014,36(2):120-124.
[11]Zhao Shancen,Zheng Fengya.Impacts of nucleotide fixation during soybean domestication and improve-ment[J].BMC Plant Biology,2015,15:463.
[12]杨智,陈颖.改进粒子群算法及其在PID整定中的应用[J].控制工程,2016,23(2):161-165.
Yang Zhi,Chen Ying.Improved particle swarm optimization and its application in PID tuning[J].Control Engineering of China,2016,23(2):161-165.
[13]Lu J,Yang C S,Peng B,et al.Self-tuning PID control scheme with swarm intelligence based on support vector machine[C]//IEEE International Conference on Mechatronics and Automation(ICMA).Washington DC,USA:IEEE,2014:1554-1558.
[14]Sayedain S,Boiko I.Optimal PI tuning rules for flow loop based on modified relay feedback test[C]//2011 50th IEEE Conference on Decision and Control and European Control.Orlando,FL,USA:IEEE,2011:7063-7068.
[15]方红庆.一种改进粒子群算法及其在水轮机控制器PID参数优化中的应用[J].南京理工大学学报,2008,32(3):274-278.
Fang Hongqing.An improved particle swarm optimization algorithm and its application in water turbine PID controller parameters optimization[J].Journal of Nanjing University of Science and Technology,2008,32(3):274-278.
[16]张培林,钱林方,曹建军,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报,2009,33(4):464-468.
Zhang Peilin,Qian Linfang,Cao Jianjun,et al.Parameter optimization of support vector machine based on ant colony optimization algorithm[J].Journal of Nanjing University of Science and Technology,2009,33(4):464-468.
[17]Beyer H.The theory of evolution strategies[M].New York:Springer,2001.
[18]李国成,李娟,周本达.几种混沌布谷鸟搜索算法的优化性能比较与仿真[J].贵州师范大学学报(自然科学版),2015,33(2):66-71.
Li Guocheng,Li Juan,Zhou Benda.Performance comparison and stimulation of chaotic cuckoo search algorithms[J].Journal of Guizhou Normal University(Natural Sciences),2015,33(2):66-71.
[19]Eberhart R,Shi Y.Special issue on particle swarm optimization[J].IEEE Trans Evol Comput,2004,8(3):201-228.
[20]Back T.Evolutionary algorithms in theory and practice[M].Oxford,U.K.:Oxford Univ Press,1996.
[21]Yao X,Liu Y,Lin G.Evolutionary programming made faster[J].IEEE Trans Evol Comput,1999,3:82-102.
[22]Cai Z,Wang Y.A multi objective optimization-based evolutionary algorithm for constrained optimization[J].IEEE Trans Evol Comput,2006,10:658-675.