参考文献/References:
[1] Podlubny I. Fractional differential equations[M]. San Diego,USA:Academic Press,1999.
[2]孙文,孙洪广,李西成. 力学与工程问题的分数阶导数建模[M]. 北京:科学出版社,2010.
[3]Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics[J]. Physical Review E,1996,53(2):1890-1899.
[4]Riewe F. Mechanics with fractional derivatives[J]. Physical Review E,1997,55(3):3581-3592.
[5]Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems[J]. Journal of Mathematical Analysis and Applications,2002,272(1):368-379
[6]AtanackoviAc’ T M,Konjik S,PilipoviAc’ S. Variational problems with fractional derivatives:Euler-Lagrange equations[J]. Journal of Physics A:Mathematical and Theoretical,2008,41(9):095201.
[7]Baleanu D,Trujillo J I. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1111-1115.
[8]Frederico G S F,Torres D F M. A formulation of Noether’s theorem for fractional problems of the calculus of variations[J]. Journal of Mathematical Analysis and Applications,2007,334(2):834-846.
[9]Frederico G S F,Torres D F M. Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem[J]. International Mathematical Forum,2008,3(10):479-493.
[10]Zhou Sha,Fu Hao,Fu Jingli. Symmetry theories of Hamiltonian systems with fractional derivatives[J]. Science China(Physics,Mechanics & Astronomy),2011,54(10):1847-1853.
[11]Zhou Yan,Zhang Yi. Noether’s theorems of a fractional Birkhoffian system within Riemann-Liouville deriva-tives[J]. Chinese Physics B,2014,23(12):124502.
[12]Zhang Yi,Zhai Xianghua. Noether symmetries and conserved quantities for fractional Birkhoffian systems[J]. Nonlinear Dynamics,2015,81(1-2):469-480.
[13]Zhai Xianghua,Zhang Yi. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay[J]. Communications in Nonlinear Science and Numerical Simulation,2016,36:81-97.
[14]张毅,周燕. 基于Riesz导数的分数阶Birkhoff系统的Noether对称性与守恒量[J]. 北京大学学报(自然科学版),2016,52(4):658-668.
Zhang Yi,Zhou Yan. Noether symmetry and conserved quantity for fractional Birkhoffian systems in terms of Riesz derivatives[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2016,52(4):658-668.
[15]张毅,丁金凤. 基于El-Nabulsi分数阶模型的广义Birkhoff系统Noether对称性研究[J]. 南京理工大学学报,2014,38(3):409-413.
Zhang Yi,Ding Jinfeng. Noether symmetries of generalized Birkhoff systems based on El-Nabulsi fractional model[J]. Journal of Nanjing University of Science and Technology,2014,38(3):409-413.
[16]张毅. Caputo导数下分数阶Birkhoff系统的准对称性与分数阶Noether定理[J]. 力学学报,2017,49(3):693-702.
Zhang Yi. Quasi-symmetry and Noether’s theorem for fractional Birkhoffian systems in terms of Caputo derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):693-702.
[17]Malinowska A B,Torres D F M. Introduction to the fractional calculus of variations[M]. London,UK:Imperial College Press,2012.