[1]黄甜甜,俞 浚,李千目.智能交通系统事件时间模式挖掘方法[J].南京理工大学学报(自然科学版),2018,42(05):571.[doi:10.14177/j.cnki.32-1397n.2018.42.05.010]
 Huang Tiantian,Yu Jun,Li Qianmu.Time pattern mining method for intelligent traffic system event[J].Journal of Nanjing University of Science and Technology,2018,42(05):571.[doi:10.14177/j.cnki.32-1397n.2018.42.05.010]
点击复制

智能交通系统事件时间模式挖掘方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年05期
页码:
571
栏目:
出版日期:
2018-10-30

文章信息/Info

Title:
Time pattern mining method for intelligent traffic system event
文章编号:
1005-9830(2018)05-0571-07
作者:
黄甜甜1俞 浚2李千目1
1.南京理工大学 计算机科学与工程学院,江苏 南京 210094; 2.江苏省新通智能交通科技发展公司,江苏 南京 210009
Author(s):
Huang Tiantian1Yu Jun2Li Qianmu1
1.School of Computer Science and Engineering,Nanjing University of Scienceand Technology,Nanjing 210094,China; 2.Jiangsu Xin Tong Intelligent Traffic Technology Development Co Ltd,Nanjing 210009,China
关键词:
智能交通系统 时滞 最大期望算法
Keywords:
intelligent transportation system time delay expectation maximization algorithm
分类号:
TP301.6
DOI:
10.14177/j.cnki.32-1397n.2018.42.05.010
摘要:
为了提高智能交通系统的事件处理效率,该文通过建立一种时滞模型来发现波动的交通相关事件的交错时滞分布,运用最大期望(EM)算法挖掘相关事件的时间依赖时滞。同时,为了发现一个大规模事件集合中的时滞分布,优化了EM算法,提出了一种近似线性的近似算法。通过实验证明了该方法在挖掘智能交通系统相关事件时间时滞方面的有效性和可行性。
Abstract:
In order to improve the solving efficiency of series of traffic problems in intelligent transportation,a time delay model is established to find the distribution of the interlaced delay of the traffic-related events,and the expectation maximization(EM)algorithm is used to mine the time-dependent delay of the relevant event. At the same time,the EM algorithm is optimized to find the delay distribution in a large set of events. Experimental results verify the effectiveness of the proposed method in mining time delay of the intelligent traffic system related events.

参考文献/References:

[1] 田寅. 城市交通智能感知与传感器网络技术研究[D]. 北京:北京交通大学交通运输学院,2015.
[2]张红,王晓明,曹洁,等. 基于大数据的智能交通体系架构[J]. 兰州理工大学学报,2015,41(2):112-115.
Zhang Hong,Wang Xiaoming,Cao Jie,et al. Intelligent transportation architecture based on large data[J]. Journal of Lanzhou University of Technology,2015,41(2):112-115.
[3]Kit Yan Chan,Tharam S Dillon,Jaipal Singh,et al. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J]. IEEE Transactions on Intelligent Transportation System,2012,13(2):644-654.
[4]乔春凯,赵佳文. 基于时序关联规则挖掘的交通拥堵预测研究[J]. 科技创新与应用,2017(1):28-29.
Qiao Chunkai,Zhao Jiawen. Study on traffic congestion prediction based on temporal association rule mining[J]. Science and Technology Innovation and Application,2017(1):28-29.
[5]Li Y,Li B,Tian B,et al. Vehicle detection based on the AND-OR graph for congested traffic conditions[J]. IEEE Transactions on Intelligent Transportation System,2013,14(2):984-993.
[6]Meinshausen N,Bühlmann P. High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics,2006,34(3):1436-1462.
[7]Han L,Song G,Cong G,et al. Overlapping decomposition for causal graphical modeling[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,US:ACM,2012:114-122.
[8]Zhou X,Hong H,Xing X,et al. Discovering spatio-temporal dependencies based on time-lag in intelligent transportation data[J]. Neurocomputing,2017,259:76-84.
[9]Kruse R,Steinbrecher M,Moewes C. Temporal pattern mining[C]//International Conference on Signals and Electronic Systems. Wroclaw,Poland:ICSES,2010:3-8.
[10]杨桂元. 中心极限定理及其在统计分析中的应用[J]. 统计与信息论坛,2000(3):13-15.
Yang Guiyuan. Central limit theorem and its application in statistical analysis[J]. Statistics and Information Forum,2000(3):13-15.
[11]生佳根,刘思峰. 一种基于本体的关联规则挖掘方法[J]. 南京理工大学学报,2008,32(4):401-405.
Sheng Jiagen,Liu Sifeng. A method of mining association rules based on ontology[J]. Journal of Nanjing University of Science and Technology,2008,32(4):401-405.
[12]孙大飞,陈志国,刘文举. 基于EM算法的极大似然参数估计探讨[J]. 河南大学学报(自然科学版),2002,32(4):35-41.
Sun Dafei,Chen Zhiguo,Liu Wenju. Study on maximum likelihood parameter estimation based on EM algorithm[J]. Journal of Henan University(Natural Science),2002,32(4):35-41.
[13]Barron A R,Cohen A,Dahmen W,et al. Approximation and learning by greedy algorithms[J]. Annals of Statistics,2008,36(1):64-94.
[14]吴超仲. OpenITS openData[EB/OL]. http://www. openits. cn/openData/index. jhtml,2016-10-12.

相似文献/References:

[1]苗国英,徐胜元.带有随机噪声和时滞的多自主体系统均方趋同控制[J].南京理工大学学报(自然科学版),2012,36(02):338.
 MIAO Guo-ying,XU Sheng-yuan.Mean Square Consensus Control of Multi-agent Systems with Stochastic Noises and Time Delays[J].Journal of Nanjing University of Science and Technology,2012,36(05):338.
[2]宋晓娜,徐胜元,沈浩,等.不确定T-S模糊时变时滞系统的时滞依赖无源输出反馈控制[J].南京理工大学学报(自然科学版),2011,(01):6.
 SONG Xiao-na,XU Sheng-yuan,SHEN Hao,et al.Delay-dependent Passive Output Feedback Control for Uncertain T-S Fuzzy Time-varying Delay Systems[J].Journal of Nanjing University of Science and Technology,2011,(05):6.
[3]孙金生,张士娟,王执铨.不确定离散时滞系统的鲁棒完整性设计[J].南京理工大学学报(自然科学版),2002,(02):157.
 SunJinsheng ZhangShijuan WangZhiquan.Robust Integrity Design of Uncertain DiscreteTime-delay Systems[J].Journal of Nanjing University of Science and Technology,2002,(05):157.
[4]徐金梁.自校正调节器全部参数在线辨识的一种新设想[J].南京理工大学学报(自然科学版),1982,(04):117.
[5]夏 慧,陈庆伟.小型无人直升机非脆弱鲁棒H∞控制器设计方法研究[J].南京理工大学学报(自然科学版),2015,39(03):272.
 Xia Hui,Chen Qingwei.Robust non-fragile H∞ controller design method for small-scale unmanned helicopter[J].Journal of Nanjing University of Science and Technology,2015,39(05):272.
[6]刘 骧,邱志鹏.一类带时滞媒介-宿主传染病模型的全局稳定性[J].南京理工大学学报(自然科学版),2016,40(05):589.[doi:10.14177/j.cnki.32-1397n.2016.40.05.014]
 Liu Xiang,Qiu Zhipeng.Global stability analysis of delayed vector-host epidemic model[J].Journal of Nanjing University of Science and Technology,2016,40(05):589.[doi:10.14177/j.cnki.32-1397n.2016.40.05.014]
[7]张子振,储煜桂.一类具有阶段结构的时滞生态流行病模型周期解[J].南京理工大学学报(自然科学版),2018,42(06):756.[doi:10.14177/j.cnki.32-1397n.2018.42.06.018]
 Zhang Zizhen,Chu Yugui.Periodic solutions of delayed eco-epidemiological modelwith stage structure[J].Journal of Nanjing University of Science and Technology,2018,42(05):756.[doi:10.14177/j.cnki.32-1397n.2018.42.06.018]

备注/Memo

备注/Memo:
收稿日期:2017-02-22 修回日期:2017-05-02
基金项目:国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0108000); 江苏省重大研发计划社会发展项目(BE2017739); 江苏省重点研发计划(产业前瞻与共性关键技术)(BE2017163); 江苏省研究生科研与实践创新计划项目(KYCX17-0401)
作者简介:黄甜甜(1993-),女,硕士生,主要研究方向:数据挖掘,E-mail:278063068@qq.com; 通讯作者:李千目(1978-),男,博士,教授,博士生导师,主要研究方向:大数据挖掘和数据处理,网络空间安全,E-mail:liqianmu@126.com。
引文格式:黄甜甜,俞浚,李千目. 智能交通系统事件时间模式挖掘方法[J]. 南京理工大学学报,2018,42(5):571-577.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-10-30