[1]张兆东,徐小亮,杨 杨,等.基于模糊PID控制策略的液压缸试验台加载系统设计[J].南京理工大学学报(自然科学版),2019,43(01):78.[doi:10.14177/j.cnki.32-1397n.2019.43.01.011]
 Zhang Zhaodong,Xu Xiaoliang,Yang Yang,et al.Design of loading system for hydraulic cylinder test-bedbased on fuzzy PID control strategy[J].Journal of Nanjing University of Science and Technology,2019,43(01):78.[doi:10.14177/j.cnki.32-1397n.2019.43.01.011]
点击复制

基于模糊PID控制策略的液压缸试验台加载系统设计()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年01期
页码:
78
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Design of loading system for hydraulic cylinder test-bedbased on fuzzy PID control strategy
文章编号:
1005-9830(2019)01-0078-08
作者:
张兆东1徐小亮2杨 杨2张鸿鹄23陆宝春2
1.扬州市职业大学 机械工程学院,江苏 扬州 225009; 2.南京理工大学 机械工程学院,江苏 南京 210094; 3.扬州市江都永坚有限公司,江苏 扬州 225200
Author(s):
Zhang Zhaodong1Xu Xiaoliang2Yang Yang2Zhang Honghu23Lu Baochun2
1.School of Mechanical Engineering,Yangzhou Vocational University,Yangzhou 225009,China; 2.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 3.Yangzhou Jiangdu Yongjian Co.,Ltd.,Yangzhou 225200,China
关键词:
液压缸试验台 控制精度 模糊比例积分微分控制策略 建模与仿真
Keywords:
hydraulic cylinder test-bed control accuracy fuzzy proportional integral differential control strategy modeling and simulation
分类号:
TH137; TP273.4
DOI:
10.14177/j.cnki.32-1397n.2019.43.01.011
摘要:
将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台的结构特征与被动控制理论,构造位置系统与加载系统的联合控制模型,然后利用MATLAB软件仿真位置系统影响下的输出加载力,得到控制精度的影响因素。最后将模糊PID控制策略添加到原有的试验台加载系统控制模块中,使其能够动态调节控制器的参数,有效提升了输出加载力的响应速度,缩短了响应时间。
Abstract:
The loading system of a hydraulic cylinder comprehensive performance test-bed is taken as the research object in this paper and a loading control method based on fuzzy proportional integral differential(PID)control strategy is proposed to solve the problem that the loading system is unstable and inaccurate due to the external interference. Firstly,the joint model of displacement system and loading system is obtained according to the structural characteristics of the test-bed and the theory of passive control. The influencing factors of the control precision are obtained by using MATLAB to simulate its output loading force under the influence of the displacement system. By adding the fuzzy PID control strategy to the original system,it can adjust its PID control parameters dynamically,effectively improve the response speed of loading force,and shorten the response time.

参考文献/References:

[1] 武金良,赵坚,于浩. 液压泵性能检测实验台设计及检测分析[J]. 机床与液压,2016,44(4):126-128.
Wu Jinliang,Zhao Jian,Yu Hao. Design and test analysis of hydraulic pump performance test platform[J]. Machine Tools and Hydraulics,2016,44(4):126-128.
[2]Wang Jixin,Liang Yunlong,Wang Zhenyu. Test and compilation of load spectrum of hydraulic cylinder for earthmoving machinery[J]. Advanced Science Letters,2011(4):6-7.
[3]田明君. 基于XC164CS单片机的液压缸试验台控制系统[J]. 液压与气动,2010,30(3):23-27.
Tian Mingjun. Control system of hydraulic cylinder test-bed based on XC164CS single chip microcomputer[J]. Hydraulics and Pneumatics,2010,30(3):23-27.
[4]张晓东,苏东海. 液压缸试验台计算机控制系统的设计[J]. 机械工程与自动化,2010(4):149-151.
Zhang Xiaodong,Su Donghai. Design of computer control system for hydraulic cylinder test-bed[J]. Mechanical Engineering and Automation,2010(4):149-151.
[5]汪晟杰,王宇恒,王博. 基于LabVIEW与三菱PLC通信在液压控制中的应用[J]. 机械制造与自动化,2017,46(2):171-173.
Wang Shengjie,Wang Yuheng,Wang Bo. Application of communication between LabVIEW and Mitsubishi PLC in hydraulic control[J]. Machinery Manufacturing & Automation,2017,46(2):171-173.
[6]韩以伦,姬光青,邱鹏程,等. 液压缸综合试验台的控制系统设计[J]. 液压与气动,2016,36(5):42-46.
Han Yilun,Ji Guangqing,Qiu Pengcheng,et al. Design of control system for hydraulic cylinder comprehensive test-bed[J]. Hydraulics and Pneumatics,2016,36(5):42-46.
[7]张丽香,王晓伟,降爱琴. 二自由度模型驱动PID控制系统参数整定方法及应用[J]. 南京理工大学学报,2014,38(4):476-480.
Zhang Lixiang,Wang Xiaowei,Jiang Aiqin.Parameter tuning method for two degree of freedom model driven PID control and its application[J]. Journal of Nanjing University of Science and Technology,2014,38(4):476-480.
[8]Chen Chengyi. Chiu fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J]. Control Engineering Practice,2008(16):658-673.
[9]史敬灼,刘玉. 超声电机简单专家PID速度控制[J]. 中国电机工程学报,2013,36(33):120-122.
Shi Jingzhuo,Liu Yu. Ultrasonic motor simple expert PID speed control[J]. Chinese Journal of Electrical Engineering,2013,36(33):120-122.

[10]钟旭佳,高晓丁,严楠. 电液比例压力控制系统的PID参数优化[J]. 西安工业大学学报,2015,35(2):106-111,118.
Zhong Xujia,Gao Xiaoding,Yan Nan. Optimization of PID parameters for electro-hydraulic proportional pressure control system[J]. Journal of Xi’an Technological University,2015,35(2):106-111,118.
[11]罗丽薇. 模糊逻辑在PID参数整定中的应用[J]. 自动化与仪器仪表,2012(2):93-94.
Luo Liwei. Application of fuzzy logic in PID parameter setting[J]. Automation and Instrumentation,2012(2):93-94.
[12]戚志东,彭富明,刘猛,等. 基于模糊PID的质子交换膜燃料电池输出电压控制[J]. 南京理工大学学报,2012,36(3):432-436.
Qi Zhidong,Peng Fuming,Liu Meng,et al. Output voltage control of proton exchange membrane fuel cell based on fuzzy PID[J]. Journal of Nanjing University of Science and Technology,2012,36(3):432-436.
[13]张贵,黄静华,夏永胜. 基于PLC的电液比例伺服系统模糊PID控制研究[J]. 机床与液压,2014,42(1):83-85.
Zhang Gui,Huang Jinghua,Xia Yongsheng. Fuzzy PID control of electro-hydraulic proportional servo system based on PLC[J]. Machine Tools and Hydraulics,2014,42(1):83-85.
[14]Cao Xiufang,Yuan Changyao. Application of the pressure compensator in the hydraulic system of ship lift[J]. Port & Waterway Engineering,2017(9):31-35.

备注/Memo

备注/Memo:
收稿日期:2018-04-12 修回日期:2018-05-28
基金项目:江苏省科技成果转化项目(BA2014130); 江苏省产学研前瞻性联合研究(BY2016004-06)
作者简介:张兆东(1972-),男,副教授,主要研究方向:机械设备的电气控制,E-mail:yzzzd@163.com; 通讯作者:陆宝春(1965-),男,博士,教授,主要研究方向:制造装备自动化与智能化、网络化控制与嵌入式系统,E-mail:lbcnust@sina.com。
引文格式:张兆东,徐小亮,杨杨,等. 基于模糊PID控制策略的液压缸试验台加载系统设计[J]. 南京理工大学学报,2019,43(1):78-85.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-02-28