[1]董雅洁,李 强,张 雪.平流层电子设备温度特征的仿真与试验研究[J].南京理工大学学报(自然科学版),2019,43(01):86.[doi:10.14177/j.cnki.32-1397n.2019.43.01.012]
 Dong Yajie,Li Qiang,Zhang Xue.Numerical simulation and experiment for thermal behaviorof stratospheric electronic equipment[J].Journal of Nanjing University of Science and Technology,2019,43(01):86.[doi:10.14177/j.cnki.32-1397n.2019.43.01.012]
点击复制

平流层电子设备温度特征的仿真与试验研究()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年01期
页码:
86
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Numerical simulation and experiment for thermal behaviorof stratospheric electronic equipment
文章编号:
1005-9830(2019)01-0086-07
作者:
董雅洁李 强张 雪
南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
Dong YajieLi QiangZhang Xue
School of Energy and Power Engineering,Nanjing University of Scienceand Technology,Nanjing 210094,China
关键词:
平流层 电子设备 对流散热 太阳辐射 风速 强迫对流 温度 数值仿真 试验
Keywords:
stratosphere electronic equipment convection hear dissipation solar radiation wind velocity forced convection temperature numerical simulation experiment
分类号:
TK12
DOI:
10.14177/j.cnki.32-1397n.2019.43.01.012
摘要:
为了研究平流层电子设备的温度特征,该文考虑温度、压强、风速、地球和太阳辐射等平流层环境以及电子设备结构、材料和功率等参数,建立了平流层电子设备温度的理论计算模型,分析了太阳辐射、风速、发热功率等参数对电子设备温度的影响规律。通过平流层环境试验,验证了理论模型的正确性。结果表明:对于平流层电子设备而言,强迫对流和辐射两种散热模式都会影响电子设备的温度,且对流散热是主要因素。风速为3 m/s时,电子设备对流散热量占58.5%,风速为15 m/s时,对流散热量占87.9%。在进行热设计时需要综合考虑这两个因素的影响。
Abstract:
A theoretical model is established to investigate the thermal characteristics of stratospheric electronic equipment,considering the stratosphere environment such as temperature,pressure,wind velocity,earth and solar radiation,as well as the structure,materials and power of the electronic equipment. The influences of solar radiation,wind velocity,power and other parameters on the temperature of electronic equipment are analyzed. An experiment is conducted and discussed to prove the reliability of the mathematical model. The results show that:forced convection and radiation can affect the temperature of the stratospheric electronic equipment,and the convection heat dissipation is the main factor. The convection heat dissipation accounts for 87.9%,when the wind velocity is 15 m/s and the convection heat dissipation accounts for 58.5% when the wind velocity is 3 m/s. The two factors should be taken into consideration in the process of thermal design.

参考文献/References:

[1] 赵达,刘东旭,孙康文,等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报,2016,37(1):45-56.
Zhao Da,Liu Dongxu,Sun Kangwen,et al. Research status,technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1):45-56.
[2]马伟,宣益民,韩玉阁. 临近空间热环境分析及低速飞行器的热设计方法[J]. 宇航学报,2010,31(5):1272-1277.
Ma Wei,Xuan Yimin,Han Yuge. Thermal environment analysis and thermal design principle of stratospheric vehicles[J]. Journal of Astronautics,2010,31(5):1272-1277.
[3]Franco H. Thermal performance modeling of NASA’s scientific balloons[J]. Advances in Space Research,2004,33(10):1717-1721.
[4]姚伟,李勇,范春石,等. 复杂热环境下平流层飞艇高空驻留热动力学特性[J]. 宇航学报,2013,34(10):1309-1315.
Yao Wei,Li Yong,Fan Chunshi,et al. Heat dynamics behavior of a stratospheric airship in a complex thermal environment at high-altitude station-keeping conditions[J]. Journal of Astronautics,2013,34(10):1309-1315.
[5]张敏. 平流层飞艇温度及红外辐射特性研究[D]. 南京:南京理工大学能源与动力工程学院,2015.
[6]Yao Wei,Lu Xiaochen,Wang Chao,et al. A heat transient model for the thermal behavior prediction of stratospheric airships[J]. Applied Thermal Engineering,2014,70(1):380-387.
[7]方贤德,王伟志,李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感,2007,28(2):5-9.
Fang Xiande,Wang Weizhi,Li Xiaojian. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing,2007,28(2):5-9.
[8]Li Defu,Xia Xinlin,Sun Chuang. Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions[J]. Advances in Space Research,2014,53(5):862-869.
[9]Bruce R,Reulet P,Millan P,et al. Experimental study of natural convection on the wall of infrared balloon[C]//10th AIAA/ASME Joint Thermo Physics and Heat Transfer Conference. Chicago,USA:American Institute of Aeronautics and Astronautics,2010:4651-4660.

[10]程雪涛,徐向华,梁新刚. 低空环境中浮空器的热数值模拟与实验研究[J]. 宇航学报,2010,31(10):2417-2421.
Cheng Xuetao,Xu Xianghua,Liang Xingang. Thermal simulation and experiment for an airship under low altitude environment[J]. Journal of Astronautics,2010,31(10):2417-2421.
[11]曹黄强,杨春晖,童志鹏. 平流层昼夜环境温度变化分析[C]//2007年中国浮空器大会论文集.北京:航空工业出版社,2008:125-127.
[12]杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006.
[13]Eckert E R G,Jackson T W. Analysis of turbulent free-convection boundary layer on flat plate[R]. Carolina,USA:Atmospheric Technology Division,NCAR-TN/STR-65,1951.
[14]任国玉,张爱英,王颖,等. 我国高空风速的气候学特征[J]. 地理研究,2009,28(6):1583-1592.
Ren Guoyu,Zhang Aiying,Wang Ying,et al. Climatology of upper wind speeds over China[J]. Geographical Research,2009,28(6):1583-1592.
[15]李亮,张翔,廖文和. TW-1B立方星被动热控制技术[J]. 南京理工大学学报,2015,39(5):578-582.
Li Liang,Zhang Xiang,Liao Wenhe. Passive thermal control technology of TW-1B cubesat[J]. Journal of Nanjing University of Science and Technology,2015,39(5):578-582.
[16]杨炳尉. 标准大气参数的公式表示[J]. 宇航学报,1983,4(1):86-89.
Yang Bingwei. Formulization of standard atmospheric parameters.[J]. Journal of Astronautics,1983,4(1):86-89.

相似文献/References:

[1]陈文虎.基于飞行马赫数和高度控制的逆升压电子设备冷却系统[J].南京理工大学学报(自然科学版),2001,(05):466.
 ChenWenhu.Reverse-bootstrap Air Cooling System Control Based on Flying Altitude and Mach Number[J].Journal of Nanjing University of Science and Technology,2001,(01):466.

备注/Memo

备注/Memo:
收稿日期:2018-01-29 修回日期:2018-09-07
基金项目:国家杰出青年科学基金(51225602)
作者简介:董雅洁(1994-),女,硕士生,主要研究方向:电子设备散热,E-mail:18362966603@163.com; 通讯作者:李强(1971-),男,教授,博士生导师,主要研究方向:强化传热技术,E-mail:liqiang@njust.edu.cn。
引文格式:董雅洁,李强,张雪. 平流层电子设备温度特征的仿真与试验研究[J]. 南京理工大学学报,2019,43(1):86-93.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-02-28