[1]丁 芳,杨 创,关山度,等.改进自适应遗传算法解决登机桥桥手调度问题[J].南京理工大学学报(自然科学版),2019,43(01):94.[doi:10.14177/j.cnki.32-1397n.2019.43.01.013]
 Ding Fang,Yang Chuang,Guan Shandu,et al.Solution to boarding bridge operator scheduling problembased on improved adaptive genetic algorithm[J].Journal of Nanjing University of Science and Technology,2019,43(01):94.[doi:10.14177/j.cnki.32-1397n.2019.43.01.013]
点击复制

改进自适应遗传算法解决登机桥桥手调度问题()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年01期
页码:
94
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Solution to boarding bridge operator scheduling problembased on improved adaptive genetic algorithm
文章编号:
1005-9830(2019)01-0094-08
作者:
丁 芳1杨 创1关山度2陈桂波2
1.中国民航大学 电子信息与自动化学院,天津 300300; 2.白云机场地面设备有限公司地勤部门,广东 广州 510000
Author(s):
Ding Fang1Yang Chuang1Guan Shandu2Chen Guibo2
1.College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China; 2.Baiyun Airport Ground Equipment Co.,Ltd. Ground Service Department,Guangzhou CityGuangdong Province,Guangzhou 510000,China
关键词:
改进自适应遗传算法 登机桥桥手调度 适应度函数 调度原则
Keywords:
improved adaptive genetic algorithm boarding bridge operator scheduling fitness function scheduling principle
分类号:
TP18
DOI:
10.14177/j.cnki.32-1397n.2019.43.01.013
摘要:
为了降低因登机桥桥手调度问题而引起的机场运行秩序被破坏、登机桥桥手工作效率低下以及工作负载不平衡事件发生的可能性,该文通过改进自适应遗传算法结合登机桥桥手调度原则对调度问题进行建模求解。首先设计了有针对性的适应度函数。同时为了克服传统遗传算法无法直接应用于该问题以及改进算法性能,该文改进了算法的执行流程,最终通过改进后的算法对问题进行优化计算。通过算法计算得到了满意的调度结果,并且与基本遗传算法、传统改进自适应遗传算法以及模拟退火遗传算法进行比较,发现性能得到大幅度提升。算法不仅避免了未改进之前的早熟问题,同时加快了收敛速度以及人工调度带来的隐患,同时克服了传统遗传算法无法直接适用于登机桥桥手调度的问题,为机场地勤部门对于桥手调度问题提供了工具和方法,具有重要实际意义与工程应用价值。
Abstract:
In order to reduce the probability of the disruption of airport operation order,inefficiency and unbalanced workload caused by boarding bridge operator scheduling problem,an improved adaptive genetic algorithm combined with the scheduling principle is used to model and solve the scheduling problem. The corresponding fitness function is designed according to the problems. In order to overcome the problem that the traditional genetic algorithm can not be directly applied to the problem and can not improve the performance,the execution process of the algorithm is improved according to the characteristics of the scheduling problem. Finally,the improved algorithm is used to optimize the calculation of the problem. Satisfactory results are obtained through the improved algorithm calculation,and compared with the basic genetic algorithm,traditional improved adaptive genetic algorithm(AGA)and simulated annealing genetic algorithm,it is found that the performance is greatly improved. The improved algorithm can not only avoid the premature problem and the hidden danger of manual scheduling,but also accelerate convergence speed. It overcomes the problem that the traditional genetic algorithm can not be directly applied to the scheduling problem of boarding bridge drivers,and provides the airport ground service department tools and methods for scheduling problem,and has important practical significance and engineering application value.

参考文献/References:

[1] Hong W H,Kim J Y,Lee C M,et al. Energy consumption and the power saving potential of a university in Korea:Using a field survey[J]. Journal of Asian Architecture & Building Engineering,2011,10(2):445-452.
[2]Sait H H. Auditing and analysis of energy consumption of an educational building in hot and humid area[J]. Energy Conversion & Management,2013,66(2):143-152.
[3]Yarbrough I,Sun Q,Reeves D C,et al. Visualizing building energy demand for building peak energy analysis[J]. Energy & Buildings,2015,91:10-15.
[4]Min H C,Rhee E K. Potential opportunities for energy conservation in existing buildings on university campus:A field survey in Korea[J]. Energy & Buildings,2014,78(4):176-182.
[5]Altan H,Douglas J S,Kim Y K. Energy performance analysis of university buildings:Case studies at Sheffield University,UK[J]. Architectural Engineering Technology,2014,3(29):2.
[6]Zhou X,Yan J,Zhu J,et al. Survey of energy consumption and energy conservation measures for colleges and universities in Guangdong province[J]. Energy & Buildings,2013,66:112-118.
[7]赵超,林思铭,许巧玲. 基于GM-RBF神经网络的高校建筑能耗预测[J]. 南京理工大学学报,2014,38(1):48-53.
Zhao Chao,Lin Siming,Xu Qiaoling. College building energy consumption prediction based on GM-RBF neural network[J]. Journal of Nanjing University of Science and Technology,2014,38(1):48-53.
[8]赵美,于航,石磊,等. 上海某高校学院楼基于能耗审计结果的节能潜力分析[J]. 建筑节能,2017(4):100-104.
Zhao Mei,Yu Hang,Shi Lei,et al. Energy-saving potential analysis of a college building in Shanghai based on the results of energy consumption audit[J]. Building Energy Efficiency,2017(4):100-104.
[9]Guan J,Nord N,Chen S. Energy planning of university campus building complex:Energy usage and coincidental analysis of individual buildings with a case study[J]. Energy & Buildings,2016,124:99-111.

[10]徐斌. 中国低碳校园建设-复旦大学案例分析[D]. 上海:复旦大学环境科学与工程系,2011.
[11]Dascalaki E G,Sermpetzoglou V G. Energy perfor-mance and indoor environmental quality in Hellenic schools[J]. Energy & Buildings,2011,43(2-3):718-727.
[12]高彪,谭洪卫,宋亚超. 高校校园建筑用能现状及存在问题分析——以长三角地区某综合型大学为例[J]. 建筑节能,2011,39(2):41-44.
Gao Biao,Tan Hongwei,Song Yachao. Analysis of the current situation and problems of energy consumption in colleges and universities-Taking a comprehensive university in the Yangtze River Delta as an example[J]. Building Energy Efficiency,2011,39(2):41-44.
[13]吴成霞. 天津市工业能耗预测与节能评价研究[D]. 天津:天津理工大学经济与管理学院,2013.
[14]Jiang Ping. A low carbon sustainable strategy using CDM methodological approach to large commercial buildings in Beijing and Shanghai[D]. East Anglia:University of East Anglia,2009.

备注/Memo

备注/Memo:
收稿日期:2018-09-20 修回日期:2018-11-08
基金项目:中央高校基本科研业务费项目中国民航大学资助专项(3122017003)
作者简介:丁芳(1960-),女,副教授,主要研究方向:智能控制、检测方向,E-mail:dingfang_60@163.com; 通讯作者:杨创(1995-),男,硕士生,主要研究方向:智能控制、无线通信方向,E-mail:452540219@qq.com。
引文格式:丁芳,杨创,关山度,等. 改进自适应遗传算法解决登机桥桥手调度问题[J]. 南京理工大学学报,2019,43(1):94-100.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-02-28