[1]杨 力.基于在线序列优化极限学习机的电子商务客户流失量预测模型[J].南京理工大学学报(自然科学版),2019,43(01):108.[doi:10.14177/j.cnki.32-1397n.2019.43.01.015]
 Yang Li.Predictions model of customer churn in E-commerce based ononline sequential optimization extreme learning machine[J].Journal of Nanjing University of Science and Technology,2019,43(01):108.[doi:10.14177/j.cnki.32-1397n.2019.43.01.015]
点击复制

基于在线序列优化极限学习机的电子商务客户流失量预测模型()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年01期
页码:
108
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Predictions model of customer churn in E-commerce based ononline sequential optimization extreme learning machine
文章编号:
1005-9830(2019)01-0108-07
作者:
杨 力12
1.合肥工业大学 管理学院,安徽 合肥 230009; 2.安徽国防科技职业学院 经贸管理学院,安徽 六安 237011
Author(s):
Yang Li12
1.School of Management,Hefei University of Technology,Hefei 230009,China; 2.Economic and Management School,Anhui Vocational College of Defense Technology,Lu’an 237011,China
关键词:
电子商务 客户流失量 云计算处理技术 预测模型 极限学习机
Keywords:
E-commerce customer churn cloud computing technology prediction model extreme Learning Machine
分类号:
TP311
DOI:
10.14177/j.cnki.32-1397n.2019.43.01.015
摘要:
为了提高电子商务客户流失量预测的准确性,针对单机处理模式无法有效预测海量电子商务客户流失量的难题,提出了在线序列优化极限学习机的电子商务客户流失量预测模型。首先通过云计算技术的Map/Reduce模式对电子商务客户流失量数据进行分割,得到多个训练子集,然后采用线序列优化极限学习机对电子商务客户流失量的每一个训练子集进行建模,并对训练子集的预测结果进行融合,得到电子商务客户流失量的最终预测结果,最后通过电子商务客户流失量算例进行模型的有效性进行验证。结果表明,该文模型提高了电子商务客户流失量的预测精度,而且减少了电子商务客户流失量建模的训练时间,大幅度提高了电子商务客户流失量预测速度。
Abstract:
In order to improve the customer churn prediction accuracy of E-commerce customer,and single machine model cannot effectively predict customer churn of massive E-commerce customers,this paper proposes a novel prediction model of customer churn in E-commerce based on online sequential optimization extreme learning machine. Firstly,the Map/Reduce model of cloud computing is used to segment the amount of customer churn in E-commerce,and multiple training subsets are obtained; secondly extreme learning machine is used to model each training subset of E-commerce customer churn,and the prediction results of training subsets are combined to get the final forecast results of customer churn in E-commerce; at last the validity of E-commerce customer churn prediction model is tested by example. The results show that the proposed model improves the prediction accuracy of customer churn in E-commerce,and the training time of E-commerce customer churn modeling has greatly reduced,improving the churn prediction speed of E-commerce customers.

参考文献/References:

[1] 于小兵,曹杰,巩在武. 客户流失问题研究综述[J]. 计算机集成制造系统,2012,18(10):2253-2263.
Yu Xiaobing,Cao Jie,Gong Zaiwu. Review on customer churn issue[J]. Computer Integrated Manufacturing Systems,2012,18(10):2253-2263.
[2]余乐安. 基于最小二乘近似支持向量回归模型的电子商务信用风险预警[J]. 系统工程理论与实践,2012,32(3):508-514.
Yu Lean. E-commerce credit risk early-warning with a least squares proximal support vector regression model[J]. Systems Engineering Theory & Practice,2012,32(3):508-514.
[3]Re N,Jit H S. An integrated framework to recommend personalized retention actions to control B2C E-commerce customer churn[J]. International Journal of Engineering Trends and Technology,2015,53(3):152-157.
[4]琚春华,卢琦蓓,郭飞鹏. 融入个体活跃度的电子商务客户流失预测模型[J]. 系统工程理论与实践,2013,33(1):141-150.
Ju Chunhua,Lu Qibei,Guo Feipen. E-commerce customer churn prediction model combined with individual activity[J]. Systems Engineering Theory & Practice,2013,33(1):141—150.
[5]张秋菊,朱帮助. 基于自组织数据挖掘的电子商务客户流失预测模型[J]. 企业经济,2011,22(1):95-99.
Zhang QiuJu,Zhu Bangzhu. Churn prediction model of E-business customer based on self-organized data mining[J]. Enterprise Economy,2011,22(1):95-99.
[6]罗彬,邵培基,罗尽尧,等. 基于粗糙集理论-神经网络-蜂群算法集成的客户流失研究[J]. 管理学报,2011,8(2):265-272.
Luo Bin,Shao Peiji,Luo Jinyao,et al. Customer churn research based on multiple classifier fusing rough sets-neural network-artificial bee colony algorithm[J]. Chinese Journal of Management,2011,8(2):265-272.
[7]朱帮助. 基于SMC-RS-LSSVM的电子商务客户流失预测模型[J]. 系统工程理论与实践,2010,30(11):1960-1967.
Zhu Bangzhu. E-business customer churn prediction based on integration of SMC,rough sets and least square support vector machine[J]. Systems Engineering Theory & Practice,2010,30(11):1960-1967.
[8]代逸生,沈培兰,孙红霞. 基于Pareto/NBD模型的电子商务网站客户流失预测研究[J]. 科学技术与工程,2010,27(10):6792-6795.
Dai Yisheng,Shen Peilan,Sun Hongxia. Research for E-commerce customer churns based on Pareto/NBD Model[J]. Science Technology and Engineering,2010,27(10):6792-6795.
[9]BahmaniB,Mohammadi G,Mohammadi M,et al. Customer churn prediction by hybrid neural networks[J]. Expert Systems with Applications,2009,36(10):12547-12553.

[10]朱帮助,张秋菊,邹昊飞,等. 基于OSA算法和GMDH网络集成的电子商务客户流失预测[J]. 中国管理科学,2011,19(5):64-70.
Zhu Bangzhu,Zhang Qiuju,Zou Haofei,et al. E-business customer churn prediction based on integration of objective system analysis and group method of data handling network[J]. Chinese Journal of Management Science,2011,l9(5):64-70
[11]夏国恩,邵培基. 改进的支持向量分类机在客户流失估计中的应用[J]. 计算机应用研究,2009,26(6):2044-2046.
Xia Guoen,Shao Peiji. Application of improved support vector classifier in customer churn prediction[J]. Application Research of Computers,2009,26(6):2044-2046.
[12]Chen Zhenyu,Fan Zhiping,Sun Minghe. A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data[J]. European Journal of Operational Research,2012,223(2):461-472.
[13]武小军,孟苏芳. 基于客户细分和AdaBoost的电子商务客户流失预测研究[J]. 工业工程,2017,20(2):99-107.
Wu Xiaojun,Meng Sufang. E-commerce customer churn prediction based on customer segmentation and AdaBoost[J]. Industrial Engineering Journal,2017,20(2):99-107.
[14]黄纬,温志萍,程初. 云计算中基于K-均值聚类的虚拟机调度算法研究[J]. 南京理工大学学报,2013,37(6):807-812.
Huang Wei,Wen Zhiping,Cheng Chu. Virtual machine scheduling algorithm based on K-means clustering in cloud computing[J]. Journal of Nanjing University of Science and Technology,2013,37(6):807-812.
[15]刘念,张清鑫,李小芳. 基于核函数极限学习机的分布式光伏短期功率预测[J]. 农业工程学报,2014,30(4):152-159.
Liu Nian,Zhang Qingxin,Li Xiaofang. Distributed photovoltaic short-term power output forecasting based on extreme learning machine with kernel[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(4):152-159.

相似文献/References:

[1]彭艳斌,艾解清.基于相关向量机的协商决策模型[J].南京理工大学学报(自然科学版),2012,36(04):600.
 PENG Yan-bin,AI Jie-qing.Relevance Vector Machine Based Negotiation Decision Model[J].Journal of Nanjing University of Science and Technology,2012,36(01):600.
[2]薛恒新.制造企业实施电子商务必须以ERP为基础[J].南京理工大学学报(自然科学版),2001,(03):308.
 XueHengxin.Implementing Electronic Commerce in Manufacturing Enterprises Must Be Based on ERP[J].Journal of Nanjing University of Science and Technology,2001,(01):308.

备注/Memo

备注/Memo:
收稿日期:2018-05-21 修回日期:2018-12-30
基金项目:国家自然科学基金(71871082); 安徽省高校人文社会科学研究重大项目(SK2016SD15); 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016456)
作者简介:杨力(1981-),男,副教授,主要研究方向:电子商务运营、电子商务服务,E-mail:yangli_liyang@163.com。
引文格式:杨力. 基于在线序列优化极限学习机的电子商务客户流失量预测模型[J]. 南京理工大学学报,2019,43(1):108-114.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-02-28