[1]李龙刚,李立伟,杨玉新,等.基于改进灰狼优化与支持向量回归的 锂电池健康状态预测[J].南京理工大学学报(自然科学版),2020,44(02):154-161.[doi:10.14177/j.cnki.32-1397n.2020.44.02.005]
 Li Longgang,Li Liwei,Yang Yuxin,et al.Prediction for state of health of lithium-ion battery by improved grey wolf optimization and support vector regression[J].Journal of Nanjing University of Science and Technology,2020,44(02):154-161.[doi:10.14177/j.cnki.32-1397n.2020.44.02.005]
点击复制

基于改进灰狼优化与支持向量回归的 锂电池健康状态预测
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年02期
页码:
154-161
栏目:
出版日期:
2020-04-30

文章信息/Info

Title:
Prediction for state of health of lithium-ion battery by improved grey wolf optimization and support vector regression
文章编号:
1005-9830(2020)02-0154-08
作者:
李龙刚1李立伟1杨玉新2罗 羽3
青岛大学 1.电气工程学院; 2.图书馆,山东 青岛266071; 3.潍坊市产品质量检验所,山东 潍坊 261000
Author(s):
Li Longgang1Li Liwei1Yang Yuxin2Luo Yu3
1.College of Electrical Engineering; 2.Library,Qingdao University,Qingdao 266071,China; 3.Weifang Product Quality Inspection Institute,Weifang 261000,China
关键词:
锂电池 健康状态 改进灰狼优化算法 支持向量回归 参数联合寻优
Keywords:
lithium-ion batteries state of health improved grey wolf optimization algorithm support vector regression parameter joint optimization
分类号:
TM912.1
DOI:
10.14177/j.cnki.32-1397n.2020.44.02.005
摘要:
为了提高锂电池健康状态(SOH)的预测精度,将改进的灰狼优化(IGWO)算法与支持向量回归(SVR)相结合,提出了一种基于改进灰狼优化和支持向量回归(IGWO-SVR)的联合算法。该算法的核心思想是运用改进的GWO算法解决SVR模型中的参数联合寻优问题。IGWO-SVR随机产生1个灰狼种群,灰狼个体的位置向量由SVR模型的3个参数C,σ,ε组成。根据每只灰狼的位置信息进行学习,并计算适应度。按照适应度值对狼群进行分级,对灰狼个体位置进行更新,然后进行差分进化操作,选择优秀个体进入下一代种群,重新计算灰狼个体在新位置的适应度。迭代过程结束后,提取狼群中适应度最优的灰狼位置信息作为最终的SVR模型参数进行训练。在美国国家航空航天局(NASA)锂电池数据集上的实验表明了所提SOH预测方法的有效性。
Abstract:
To improve the prediction accuracy of state of health(SOH)for lithium-ion batteries,a joint algorithm based on the improved grey wolf optimization and the support vector regression(IGWO-SVR)is proposed by combining improved grey wolf optimization(IGWO)algorithm with the support vector regression(SVR). The core idea of this algorithm is to use the IGWO algorithm to solve the problem of parameter joint optimization in the SVR model. The IGWO-SVR generates a wolf population randomly. The position vector of the wolf is composed of C,σ,ε three parameters of the SVR model. The location information of each grey wolf is used to learn,and the fitness is calculated. The wolves are graded according to the fitness value,and the locations of individual grey wolves are updated. Then the differential evolution operation is carried out to select excellent individuals to enter the next generation population,and the fitness of gray wolf individuals in the new position is recalculated. At the end of the iteration process,the grey wolf location information with optimal fitness in the wolves is extracted and trained as the final SVR model parameters. Experiment on the lithium-ion batteries datasets of NASA demonstrates the effectiveness of the proposed SOH prediction method.

参考文献/References:

[1] Zheng Linfeng,Zhang Lei,Zhu Jiangguo,et al. Co-estimation of state-of-charge,capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model[J]. Applied Energy,2016,180(8):424-434.
[2]Zhao Chen,Yin He,Ma Chengbin. Quantitative efficiency and temperature analysis of battery-ultracapacitor hybrid energy storage systems[J]. IEEE Transactions on Sustainable Energy,2016,7(4):1791-1802.
[3]Song Junghoon,You Seungjae,Dong Hyupjeon,et al. Numerical modeling and experimental validation of pouch-type lithium-ion battery[J]. Journal of Applied Electrochemistry,2014,44(9):1013-1023.
[4]Hu Xiaosong,Jiang Jiuchun,Cao Dongpu,et al. Battery health prognosis for electric vehicles using sample entropy and sparse bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics,2016,63(4):2645-2656.
[5]Rezvanizaniani S M,Liu Zongchang,Chen Yan,et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle(EV)safety and mobility[J]. Journal of Power Sources,2014,256(12):110-124.
[6]Anthony Barré,Deguilhem B,Sébastien Grolleau,et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources,2013,241(11):680-689.
[7]Wang Shuai,Zhao Lingling,Su Xiaohong,et al. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies,2014,7(10):6492-6508.
[8]He Zhiwei,Gao Mingyu,Ma Guojin,et al. Online state-of-health estimation of lithium-ion batteries using dynamic bayesian networks[J]. Journal of Power Sources,2014,267(3):576-583.
[9]Liu Datong,Luo Yue,Liu Jie,et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm[J]. Neural Computing & Applications,2014,25(3-4):557-572.
[10]Song Yuchen,Liu Datong,Yang Chen,et al. Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery[J]. Microelectronics Reliability,2017,75(6):142-153.
[11]Zhang Yujie,Liu Datong,Yu Jinxiang,et al. EMA remaining useful life prediction with weighted bagging GPR algorithm[J]. Microelectronics Reliability,2017,75(3):253-263.
[12]Dong Hancheng,Jin Xiaoning,Lou Yangbing,et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources,2014,271(11):114-123.
[13]Qin Taichun,Zeng Shengkui,Guo Jianbin. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability,2015,55(9-10):1280-1284.
[14]刘皓,胡明昕,朱一亨,等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报,2018,42(3):329-334.
Liu Hao,Hu Mingxin,Zhu Yiheng,et al. Health status prediction of lithium batteries based on genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology,2018,42(3):329-334.
[15] 陈建新,候建明,王鑫,等. 基于局部信息融合及支持向量回归集成的锂电池健康状态预测[J]. 南京理工大学学报,2018,42(1):48-55.
Chen Jianxin,Hou Jianming,Wang Xin,et al. Health status prediction of lithium batteries based on local information fusion and support vector regression[J]. Journal of Nanjing University of Science and Technology,2018,42(1):48-55.
[16]VAPNIK V N. 统计学习理论的本质[M]. 张学工 译. 北京:清华大学出版社,2000:96-101.
[17]Mirjalili S,Mirjalili S M,Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69(3):46-61.
[18]刘波,王凌,金以慧. 差分进化算法研究进展[J]. 控制与决策,2007,22(7):721-729.
Liu Bo,Wang Ling,Jin Yihui. Research progress of differential evolution algorithm[J]. Control and Decision-making,2007,22(7):721-729.
[19]Saha B,Goebel K. Battery data set[R]. California,US:NASA Ames Prognostics Data Repository,2007.
[20]徐成善,卢兰光,任东生,等. 车用锂离子电池放电区间与容量衰减关系的研究[J]. 汽车工程,2017,39(10):1141-1144.
Xu Chengshan,Lu Languang,Ren Dongsheng,et al. Research on the relationship between discharge interval and capacity attenuation of automotive lithium-ion batteries[J]. Automotive Engineering,2017,39(10):1141-1144.
[21]Sun B,Jiang J,Zheng F,et al. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis[J]. Journal of Power Sources,2015,282:146-157.

相似文献/References:

[1]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(02):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
[2]陈建新,候建明,王 鑫,等.基于局部信息融合及支持向量回归集成的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(01):48.[doi:10.14177/j.cnki.32-1397n.2018.42.01.007]
 Chen Jianxin,Hou Jianming,Wang Xin,et al.Prediction for state of health of lithium-ion batteriesby local informationfusion with ensemble support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(02):48.[doi:10.14177/j.cnki.32-1397n.2018.42.01.007]

备注/Memo

备注/Memo:
收稿日期:2019-04-16 修回日期:2019-06-06
基金项目:山东省科技发展计划项目(2011GGB01123); 山东省重点研发计划项目(2017GGX50114)
作者简介:李龙刚(1992-),男,硕士生,主要研究方向:新能源汽车电控系统开发,E-mail:1066795639@qq.com; 通讯作者:李立伟(1970-),男,博士,教授,主要研究方向:高速列车运行监测及控制系统,新能源汽车电控系统开发,E-mail:ytllw@163.com。
引文格式:李龙刚,李立伟,杨玉新,等. 基于改进灰狼优化与支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报,2020,44(2):154-161.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-04-20