[1]吴松波,万旭升,杨婷婷,等.混合侵蚀和冻融循环条件下混凝土力学机制试验研究[J].南京理工大学学报(自然科学版),2020,44(04):493-500.[doi:10.14177/j.cnki.32-1397n.2020.44.04.015]
 Wu Songbo,Wan Xusheng,Yang tingting,et al.Experimental study on mechanical mechanism of concreteunder mixed erosion and freeze-thaw cycling[J].Journal of Nanjing University of Science and Technology,2020,44(04):493-500.[doi:10.14177/j.cnki.32-1397n.2020.44.04.015]
点击复制

混合侵蚀和冻融循环条件下混凝土力学机制试验研究()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年04期
页码:
493-500
栏目:
出版日期:
2020-08-30

文章信息/Info

Title:
Experimental study on mechanical mechanism of concreteunder mixed erosion and freeze-thaw cycling
文章编号:
1005-9830(2020)04-0493-08
作者:
吴松波万旭升杨婷婷颜梦宇刘 力钟昌茂
西南石油大学 土木工程与建筑学院,四川 成都 610500
Author(s):
Wu SongboWan XushengYang tingtingYan mengyuLiu LiZhong Changmao
School of Civil Engineering and Architecture,Southwest Petroleum University,Chengdu 610500,China
关键词:
混合侵蚀 半浸泡 冻融循环 硫酸盐 结晶
Keywords:
mixed erosion semi-immersion freeze-thaw cycle sulfate crystallization
分类号:
TU448
DOI:
10.14177/j.cnki.32-1397n.2020.44.04.015
摘要:
混凝土在硫酸盐侵蚀和冻融循环条件下易破坏,引发基础承载力下降。为了研究寒区盐渍土环境下混凝土的劣化机制,进行混凝土在硫酸钠和氯化钠混合溶液中的冻融循环试验,循环次数分别为0、10、20、30、40、50次; 其次测量了冻融循环后混凝土的抗压强度,并结合X射线衍射试验,分析了侵蚀后混凝土内部物质的变化对力学性能的影响; 最后通过冻融前后的弹性模量及质量变化,计算了损伤变量和质量损失率变化,研究了冻融循环下的混凝土损伤规律。研究结果表明:随着冻融次数的增加,混凝土力学性能大幅度弱化,内部损伤越严重,表面剥落越严重; 弹性模量、抗压强度均大幅度降低,质量损失率与损伤变量均增大。混凝土内部发生了物理反应(芒硝的生成)和化学反应(石膏和钙矾石的生成),共同造成了混凝土内部结构破坏。
Abstract:
Under the condition of sulfate attack or freeze-thaw cycle,concrete is easily destroyed,leading to its decrease in foundation bearing capacity. In order to study the deterioration mechanism of concrete in saline soil in cold area,firstly,the freeze-thaw cycling test of concrete in mixed solution of sodium sulfate and sodium chloride is carried out,the number of cycles is 0,10,20,30,40,50 times,respectively. Secondly,the compressive strength of concrete after freeze-thaw cycling is measured,and the influence of material change on mechanical properties after erosion is analyzed by XRD diffraction test. Finally,the change of damage variable and mass loss rate is calculated by the change of elastic modulus and mass before and after freeze-thaw,and the damage law of concrete under freeze-thaw cycling is studied. The result shows that when the number of freeze-thaw increases,the concrete deteriorates,the mechanical properties weaken,the surface spalling worsens,both elastic modulus and compressive strength decreased greatly and both mass loss rate and damage variables increased. Because the physical reaction of formation of mirabilite and chemical reaction of formation of gypsum and ettringite that occur inside the concrete together cause damages to the internal structure of the clay.

参考文献/References:

[1] 田威,党发宁,陈厚群. 混凝土CT图像的3维重建技术[J]. 四川大学学报,2010,42(6):12-16.
Tian Wei,Dang Faning,Chen Houqun. Research on three-dimension reconstruction technology of concrete based on CT images[J]. Journal of Sichuan University,2010,42(6):12-16.
[2]Powers T C. A working hypothesis for further studies of frost resistance of concrete[J]. Journal of ACI,1945,16(4):245-272.
[3]Haynes H,Bassuoni M T. Physical salt attack on concrete[J]. Concrete International,2011,33(11):38-42.
[4]ACI Committee 201,Guide to Durable Concrete[S].
[5]Petersson P E. Influence of minimum temperature on the scaling resistance of concrete[R]. Sweden:Swedish National Testing and Research Institute,1994.
[6]杨全兵. 混凝土盐冻破坏机理(Ⅰ)——毛细管饱水度和结冰压[J]. 建筑材料学报,2007,10(5):522-527.
Yang Quanbin. Mechanisms of deicer-frost scaling of concrete(Ⅰ)—Capillary-uptake degree of saturation and ice-formation pressure[J]. Journal of Building Materials,2007,10(5):522-527.
[7]杨全兵. 混凝土盐冻破坏机理(Ⅱ):冻融饱水度和结冰压[J]. 建筑材料学报,2012,15(6):741-746.
Yang Quanbin. One of mechanisms on the deicer-frost scaling of concrete(Ⅱ):degree of saturation and ice-formation pressure during freezing-thawing cycles.[J]. Journal of Building Materials,2012,15(6):741-746.
[8]李隽,高培伟,刘宏伟,等. 混凝土在浸泡和干湿循环作用下的抗氯盐侵蚀性能[J]. 南京理工大学学报,2017,41(5):666-670.
Li Jun,Gao Peiwei,Liu Hongwei,et al. Study on concrete resistance to chloride salt corrosion under full soaking and wet-dry cycling condition[J]. Journal of Nanjing University of Technology,2017,41(5):666-670.
[9]石立安,麻海燕,柯凯. 混凝土的抗酸雨腐蚀性及其机理研究[J]. 南京理工大学学报,2012,36(4):717-723.
Shi Lian,Ma Haiyan,Ke Kai. Concrete’s resistance to acide rain and its mechanism[J]. Journal of Nanjing University of Technology,2012,36(4):717-723.
[10]陈四利,宁宝宽,胡大伟. 硫酸盐和冻融双重作用对混凝土力学性质的影响[J]. 工业建筑,2006,4(12):12-15.
Chen Sili,Ning Baokuan,Hu Dawei. Study of concrete under double action of sulfate and circulation of frost and thaw[J]. Industrial Construction,2006,4(12):12-15.
[11]郑晓宁,刁波,孙洋,等. 混合侵蚀与冻融循环作用下混凝土力学性能劣化机理研究[J]. 建筑结构学报,2010,31(2):111-116.
Zheng Xiaoning,Diao Bo,Sun Yang,et al. Study of deterioration mechanism of concrete in multi-aggressive and freeze-thaw environment[J]. Journal of Architectural Structure,2010,31(2):111-116.
[12]刘赞群,张丰燕,刘厚,等. 半浸泡混凝土中Na2SO4溶液传输过程[J]. 建筑材料学报,2019(1):1-9.
Liu Zanqun,Zhang Fengyan,Liu Hou,et al. Solution transport process in concrete partially exposed to Na2SO4solution[J]. Journal of Building Materials,2019(1):1-9.
[13]Scherer G W. Stress from crystallization of salt[J]. Cement and Concrete Research,2004,29(9):1613-1624.
[14]Buenfeld N R,Shurafa-Daoudi M S,et al. Chloride transport due to wick action in concrete[Z]. Paris:RILEM,1997.
[15]Scherer G W. Stress from crystallization of salt in pores[C]//Proceedings of International Congress on Deterioration & Conservation of Stone. New York:Elsevier Science,2000:187-194.
[16]Enjilela R,Cano B,Andrew Komar,et al. Monitoring steady state moisture distribution during wick action in mortar by magnetic resonance imaging[J]. Materials and Structures,2017,50(2):151.
[17]Wong H S,Pappas A M,et al. Effect of entrained air voids on the microstructure and mass transport properties of concrete[J]. Cement & Concrete Research,2011,41(10):1067-1077.
[18]刘赞群,候乐,邓德华,等. 硫铝酸盐水泥净浆半浸泡在碳酸钠溶液中的破坏机理[J]. 硅酸盐学报,2017,45(5):639-643.
Liu Zanqun,Hou Le,Deng Dehua,et al. Damage mechanism of calcium sulphoaluminate cement paste partially exposed to sodium carbonate solution[J]. Journal of the Chinese Ceramic Society,2017,45(5):639-643.
[19]罗伟甫. 盐渍土地区公路工程[M]. 北京:人民交通出版社,1980.
[20]张克从. 近代晶体学[M]. 北京:科学出版社,2011.
[21]万旭升,赖远明. 降温速率对硫酸钠溶液晶体析出影响的试验研究[J]. 冰川冻土,2016,38(2):431-437.
Wan Xusheng,Lai Yuanming. Experimental study on the influence of cooling rate on salt crystallizing in sodium sulfate solution[J]. Journal of Glaciology and Geocryology,2016,38(2):431-437.
[22]张立新,徐学祖,陶兆祥,等. 含氯化钠盐冻土中溶液的二次相变分析[J]. 自然科学进展,1993,3(1):48-52.
Zhang Lixin,Xu Xuezu,Tao Zhaoxiang,et al. Secondary phase transition analysis of solution in permafrost containing sodium chloride[J]. Progress in Natural Science,1993,3(1):48-52.
[23]Wan Xusheng,You Zhemin,Wen Haiyan,et al. An experimental study of salt expansion in sodium saline soils under transient conditions[J]. Journal of Arid Land,2017,9(6):865-878.
[24]万旭升,赖远明. 硫酸钠溶液和硫酸钠盐渍土的冻结温度及盐晶析出试验研究[J]. 岩土工程学报,2013,35(11):2090-2096.
Wan Xusheng,Lai Yuanming. Experimental study on freezing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil[J]. Chinese Journal of Geotechnical Engineering,2013,35(11):2090-2096.
[25]周凤玺,应赛,蔡袁强,等. 多孔介质中晶体的结晶压力分析[J]. 岩土工程学报,2019,41(6):1158-1163.
Zhou Fengxi,Ying Sai,Cai Yuanqiang,et al. Crystallization pressure of crystals in porous media[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1158-1163.
[26]Correns C W. Growth and dissolution of crystals under linear pressure[J]. Discussions of the Faraday Society,1949,3(5):267-271.
[27]Winkler E M,Singer P C. Crystallization pressure of salt in stone and concrete[J]. Geological Society of America Bulletin,1972,83(5):3509-3514.
[28]肖泽岸. 盐渍化冻土水盐迁移过程及变形机理研究[D]. 甘肃:中国科学院大学西北生态环境资源研究院,2017.
[29]韩博,吕世华,奥银焕. 西北戈壁区夏季一次降水前后土壤温度变化规律分析[J]. 高原气象,2009,28(1):36-45.
Han Bo,Lv Shihua,Ao Yinhuan. Analysis on the difference of soil temperature variation before and after precipitation in Gobi Regin[J]. Plateau Meteorology,2009,28(1):36-45.
[30]高立强. 混凝土硫酸盐侵蚀抑制措施及其机理研究[D]. 成都:西南交通大学土木工程学院,2008.
[31]慕儒,缪昌文,刘加平,等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J]. 硅酸盐学报,2001,29(6):523-529.
Mu Ru,Miu Changwen,Liu Jiaping,et al. Effect of NaCl and NaSO4 solution on the frost resistance of concrete and its mechanism[J]. Journal of the Chinese Ceramic Society,2001,29(6):523-529.
[32]张东方. 硫酸盐腐蚀和冻融复合作用下混凝土的性能研究[D]. 青岛:青岛理工大学土木工程学院,2015.
[33]JGJ55-2011,普通混凝土配合比设计规程[S].
[34]郗武. 混凝土单轴受压细观统计损伤本构模型研究[D]. 西安:西安建筑科技大学土木工程学院,2013.

备注/Memo

备注/Memo:
收稿日期:2019-11-06 修回日期:2020-05-06
基金项目:国家自然科学基金(41601068); 西南地区红层泥岩道路工程特性及修建技术研究(KYY2019140(19-20)); 西南石油大学科研“起航计划”项目(2015QHZ025)
作者简介:吴松波(1994-),男,硕士生,主要研究方向:岩土工程、寒区混凝土,E-mail:1284268177@qq.com; 通讯作者:万旭升(1987-),男,副教授,主要研究方向:寒区工程数值模拟与计算,E-mail:xinyanwanxxusheng@163.com。
引文格式:吴松波,万旭升,杨婷婷,等. 混合侵蚀和冻融循环条件下混凝土力学机制试验研究[J]. 南京理工大学学报,2020,44(4):493-500.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-08-30