[1]卢云许,陆宝春,张世琪.切片平均分子量神经网络预测模型研究及应用[J].南京理工大学学报(自然科学版),2000,(02):139-142.
 LuYunxu LuBaochun ZhangShiqi.The Research and Application of Neural Network Predicting Model of Molecule Weight of Casting Slice Belt[J].Journal of Nanjing University of Science and Technology,2000,(02):139-142.
点击复制

切片平均分子量神经网络预测模型研究及应用()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2000年02期
页码:
139-142
栏目:
出版日期:
2000-04-30

文章信息/Info

Title:
The Research and Application of Neural Network Predicting Model of Molecule Weight of Casting Slice Belt
作者:
卢云许陆宝春张世琪
南京理工大学制造工程学院, 南京210094
Author(s):
LuYunxu LuBaochun ZhangShiqi
School of Manufacturing Engineering,NUST,Nanjing 210094
关键词:
神经网络 多重回归 回归分析 结构最优化 遗传算法BP 算法 在线预测
Keywords:
neural netw ork multiple reg ression structural optimizat ion genet ic algorithm backpropagation algorithm on-line predict ing model
分类号:
TP183
摘要:
建立聚合反应切片平均分子量的预测模型对锦纶帘子布的生产有重要的意义。该文采用改进的遗传算法 (GA)和BP算法相结合的混合学习算法来训练神经网络 ,并采用多元逐步回归法对输入层节点数进行了优化 ,建立了聚合反应切片平均分子量在线预测的神经网络模型。在某化工厂聚合反应中的应用表明 ,该模型比基于最小二乘法的预测模型收敛速度快、预测精度高、网络的泛化能力强。
Abstract:
Polymerization is a complicated and important chemical process in the polyamide fibre product ion. It. s signif icant to build the predict ing model of molecule w eight of casting slice belt to guide the product ion. The improved hybrid g enetic algorithm and backpropagat ion algorithm are combined to t rain neural netw ork, and the node numbers of input layer are opt imized based on mult iple stepw ise regression. An on-line predicting neural netw ork model of molecule w eight of cast ing slice belt in polymerizat ion reaction is presented. Its applicat ion in certain chemical factory shows that this model has faster convergence, higher predict ion accuracy and more network generalization than those of the least square.

参考文献/References:

1 罗红宝. 扬州有机化工厂CIMS 示范工程锦纶- 6 帘子布生产优化子系统的研究及开发:[ 硕士学位论文] .南京: 南京理工大学, 1998. 41~ 43
2 陈国良, 王煦法, 庄镇泉. 遗传算法及其应用. 北京: 人民邮电出版社, 1996
3 Davidon W C. New least square algorithm. Journal of Optimization Theory and Applications,1976, 18( 2) : 187~ 197

相似文献/References:

[1]何春梅,叶征春,韩牟,等.形态双向联想记忆网络的摄动鲁棒性研究[J].南京理工大学学报(自然科学版),2011,(05):664.
 HE Chun-mei,YE Zheng-chun,HAN Mu,et al.Perturbation Robustness of Morphological Bidirectional Associative Memories Networks[J].Journal of Nanjing University of Science and Technology,2011,(02):664.
[2]刘永建,朱剑英,曾捷,等.改进BP神经网络在发动机性能趋势分析和故障诊断中的应用[J].南京理工大学学报(自然科学版),2010,(01):24.
 LIU Yong-jian,ZHU Jian-ying,ZENG Jie.Improved BP Neural Network System for Engine Performance Trend Analysis and Fault Diagnosis[J].Journal of Nanjing University of Science and Technology,2010,(02):24.
[3]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(02):800.
[4]袁军堂,夏玲玲,汪振华,等.灌胶结合面对数控机床动态性能影响研究[J].南京理工大学学报(自然科学版),2012,36(06):0.
 YUAN Jun tang,XIA Ling ling,WANG Zhen hua,et al.Impact of Glued Joint on Dynamic Characteristics of CNC Machine Tool[J].Journal of Nanjing University of Science and Technology,2012,36(02):0.
[5]朱 红,陈清华,刘国岁.高速神经网络HS-K-WTA-2的研究[J].南京理工大学学报(自然科学版),2007,(01):89.
 ZHU Hong,CHEN Qing-hua,LIU Guo-sui.High-speed Neural Network HS-K-WTA-2[J].Journal of Nanjing University of Science and Technology,2007,(02):89.
[6]都洪基,苏炜宏,邓烽.一种基于神经网络的谐波电流抑制方法[J].南京理工大学学报(自然科学版),2003,(01):28.
 DuHongji SuWeihong DengFeng.Adaptive Approach to Detection of the Harmonic Currents on Artificial Neural Network[J].Journal of Nanjing University of Science and Technology,2003,(02):28.
[7]魏荣,卢俊国,李军,等.α阶时延逆系统的小波神经网络实现[J].南京理工大学学报(自然科学版),2001,(04):342.
 WeiRong LuJunguo LiJun WangZhiquan.Realization of α-order Time-delay Inverse Systems Based on Wavelet Neural Networks[J].Journal of Nanjing University of Science and Technology,2001,(02):342.
[8]聂伟荣,朱继南,赵玉霞.基于改进BP网络的地震动信号目标识别[J].南京理工大学学报(自然科学版),2000,(01):20.
 NieWeirong ZhuJinan ZhaoYuxia.Microseismic Signal Targets Identification Based on Improved BP Neural Networks[J].Journal of Nanjing University of Science and Technology,2000,(02):20.
[9]牛玉刚,杨成梧,赵建丛.基于多步预测的PID型神经网络控制[J].南京理工大学学报(自然科学版),2000,(03):199.
 NiuYugang YangChengwu ZhaoJiancong.A PID-like Neural Network Control Based on Multi-step Prediction[J].Journal of Nanjing University of Science and Technology,2000,(02):199.
[10]赵启林,卓家寿,柳景春.BP网络的BP-G-S学习算法[J].南京理工大学学报(自然科学版),1999,(04):308.
 ZhaoQilin ZhuoJiashou LiuJingchuen.The BP G S Learning Algorithms of BP Network[J].Journal of Nanjing University of Science and Technology,1999,(02):308.

备注/Memo

备注/Memo:
卢云许 男 24 岁 硕士生
更新日期/Last Update: 2013-03-25