[1]邵慧萍.求解动力系统响应的高精度改进模态叠加算法[J].南京理工大学学报(自然科学版),2007,(06):706-709.
 SHAO Hui-ping.High Precision Improved Mode Superposition Algorithm for Dynamics System Response[J].Journal of Nanjing University of Science and Technology,2007,(06):706-709.
点击复制

求解动力系统响应的高精度改进模态叠加算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2007年06期
页码:
706-709
栏目:
出版日期:
2007-12-30

文章信息/Info

Title:
High Precision Improved Mode Superposition Algorithm for Dynamics System Response
作者:
邵慧萍
南京理工大学机械工程学院, 江苏南京210094
Author(s):
SHAO Hui-ping
School of Mechanical Engineering,NUST,Nanjing 210094,China
关键词:
动力系统响应 高精度 模态叠加算法 有限元分析 动力子结构
Keywords:
dynam ics system response h igh precision mode superposit ion algorithm f inite e lement ana lysis dynam ic substructure
分类号:
O313
摘要:
为了求得更精确的动力系统响应值,该文提出了1个求解动力系统响应的高精度改进模态叠加算法。使用该算法,不仅可以得到系统低阶模态的响应值,而且可以利用较低阶模态响应信息得到系统高阶模态的响应近似值。相比于实用的改进模态叠加算法,该算法的适用载荷可以拓宽到普通载荷(如突变载荷)。该算法弥补了有限元分析忽略高阶信息的不足,还可以推广应用于利用动力子结构等求解模态信息的大型动力系统响应。文中给出了两个算例,计算结果表明高精度改进模态叠加算法精度远远好于传统的模态叠加算法。
Abstract:
In order to so lve the response solution fo r dynam ics system accurately, a high prec ision improvedmode superposition a lgorithm is proposed. This algorithm is used to obta in the response values of the low-degree mode informat ion and the high-degree mode response values approx im ately in terms of the low er degree mode response va lues in format ion. Compared w ith the practical improvedmode superposition algorithm, the ca lculab le loads of the new algorithm can be broadened to common loads ( e. g. break loads). This new algo rithm remed ies the defect of the f in ite element analysis, wh ich neglects the high-degree inform ation. Th is algorithm may be used to so lve the large dynam ic system responsew hich makes use of the dynam ic substructure to getmode info rmation. The resu lts from the tw o examp les g iven show that the accuracy o f the h igh prec ision improvedmode superposition a lgorithm is superio r to the norma lmode superposition algorithm.

参考文献/References:

[ 1] 隋允康, 杜家政, 彭细荣. M SC. Nastran有限元动力分析与优化设计实用教程[M ]. 北京: 科学出版社, 2004.
[ 2] Newm ark N M. A m ethod of computation fo r structure dynam ics [ J] . ASCE Eng ineering M echan ics Div-i sion, 1959, 85: 67- 94.
[ 3] W ilson E L. A computer prog ram for the dynam ic stress ana lysis o f underg round structures [ R]. Berkeley: University of C aliforn ia, 1968.
[ 4] Chung J, H ulbert G M. A fam ily o f s ing le-step houbolt tim e integration a lgo rithm s fo r struc tura l dynam ics [ J] . Compu ter M e thods in App lied M echan ics and Eng ineer ing, 1994, 118: 1- 11.
[ 5] 陈火红. M arc有限元实例分析教程[M ]. 北京: 机械工业出版社, 2002.
[ 6] 邵慧萍. 求解结构动力响应的直接积分方法研究[ D]. 杭州: 浙江大学力学系, 1987.
[ 7] ShaoH, Cai C. The direct integ ration three-paramete rs optim al schemes for structure dynam ics [ A ]. IC Machine Dynam ics And Eng ineer Application 1988 [ C]. X i. an: X i. an Jiao Tong Un iversity Press, 1988.
[ 8] 邵慧萍, 蔡承文. 结构动力学方程数值积分的三参数算法[ J]. 应用力学学报, 1988, 5( 4): 76- 81.
[ 9] Chung J, Hu lbert G M. A tim e integration a lgor ithm for structural dynam ics w ith im proved num er ica l diss-i pation: The gene ra lized-Ame thod [ J]. Journal of App liedM echanics, 1993, 60: 371- 375.
[ 10] Shao H. An im proved m ode supe rpo sition me thod fo r linear dam ped system s [ J]. Comm un ica tions in Applied Nume ricalM ethods, 1991, 7 ( 8): 579- 580.
[ 11] 邵慧萍. 求解动力系统响应实用的改进模态叠加算法[ J] . 南京理工大学学报, 2006, 30 ( 4) : 454 - 457.
[ 12] 贺兴书. 机械振动学[M ] . 上海: 上海交通大学出版社, 1989.

相似文献/References:

[1]迟泽英.用于摄制光学码盘的双高斯型投影物镜的设计[J].南京理工大学学报(自然科学版),1984,(01):73.
[2]郑祖炳.谐波传动在精密机械中的应用及其发展动向的初步探讨[J].南京理工大学学报(自然科学版),1982,(03):141.

备注/Memo

备注/Memo:
作者简介: 邵慧萍( 1962- ), 女, 浙江杭州人, 讲师, 主要研究方向: 动力分析理论及应用, 有限元编程研究, Ema i:l ashaohp@ m ai.l njust. edu. cn。
更新日期/Last Update: 2007-12-30