[1]冯志刚,王祁,徐涛,等.基于小波包和支持向量机的传感器故障诊断方法[J].南京理工大学学报(自然科学版),2008,(05):609-614.
 FENG Zhi-gang,WANG Qi,XU Tao,et al.Sensor Fault Diagnosis Based on Wavelet Packet and Support Vector Machines[J].Journal of Nanjing University of Science and Technology,2008,(05):609-614.
点击复制

基于小波包和支持向量机的传感器故障诊断方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2008年05期
页码:
609-614
栏目:
出版日期:
2008-10-30

文章信息/Info

Title:
Sensor Fault Diagnosis Based on Wavelet Packet and Support Vector Machines
作者:
冯志刚;王祁;徐涛;信太克规;
1. 哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001; 2. 沈阳航空工业学院自动化学院,辽宁沈阳110136
Author(s):
FENG Zhi-gang1WANG Qi1XU Tao2SHIDA Katsunori1
1.School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin 150001,China;2.Department of Automation,Shenyang Institute of Aeronautical Engineering,Shenyang 110136,China
关键词:
小波包 支持向量机 特征提取 传感器故障诊断
Keywords:
wavelet packet support vector machines feature extraction sensor fault diagnosis
分类号:
TH812
摘要:
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。
Abstract:
To solve the fault diagnosis problem of self-validating pressure sensor,a sensor fault diagnosis approach based on wavelet packet transform and support vector machines is proposed.After a three-level decomposition of wavelet packet,the coefficients of each node are achieved.With some cutting algorithm,the reconstructed signals with fault character are strengthened.The energy of each node is calculated with reconstructed signals,and the average cutting ratios of all nodes are regarded as the feature vector.The support vector machines for multi-classification used as fault classifiers are established to identify the condition and fault pattern of the sensor.The results of fault diagnosis on self-validating pressure sensors,temperature and flow sensor show that the proposed approach can be applied to the sensor fault diagnosis effectively.

参考文献/References:

[1] Zhang J ianqiu, Yan Yong. A wavelet2based app roach to abrup t fault detection and diagnosis of sensor [ J ]. IEEE Transactions on Instrumentation and Measure2 ment, 2001, 50 (5) : 1 389 - 1 396.
[2] 徐涛,王祁. 基于小波包神经网络的传感器故障诊 断方法[ J ]. 传感技术学报, 2006, 19 ( 4) : 1 060 - 1 064.
[3] 雷亚国,何正嘉,訾艳阳,等. 基于特征评估和神经 网络的机械故障诊断模型[ J ]. 西安交通大学学 报, 2006, 40 (6) : 558 - 562.
[4] Vapnik V. The nature of statistics learning theory [M ]. New York: Sp ringerVerlag, 1995. 40 - 50.
[5] Vapnik V. Statistical learning theory[M ]. New York: JohnWiley and Sons, 1998. 102 - 110.
[6] 于德介,陈森峰,程军圣,等. 一种基于经验模式分 解与支持向量机的转子故障诊断方法[ J ]. 中国电 机工程学报, 2006, 26 (16) : 162 - 167.
[7] 程军圣,于德介,杨宇. 基于内禀模态奇异值分解 和支持向量机的故障诊断方法[ J ]. 自动化学报, 2006, 32 (3) : 476 - 480.
[8] 宋乃华,邢清华. 基于支持向量机的空中目标大类 别分类[ J ]. 系统工程与电子技术, 2006, 28 ( 8) : 1 279 - 1 281.
[9] Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition [ J ]. IEEE Transac2 tions on Aerospace and Electronic Systems, 2001, 37 (2) : 643 - 654.
[10] 吴丹,顾学迈. 一种新的基于支持向量机的自动调 制识别方案[ J ]. 南京理工大学学报(自然科学 版) , 2006, (30) 5: 569 - 573.
[11] 赵晖,荣莉莉,李晓. 一种设计层次支持向量机多 类分类器的新方法[ J ]. 计算机应用研究, 2006, 6: 34 - 37.

相似文献/References:

[1]邓敏,韩玉启.基于支持向量机的大学财务困境预警模型[J].南京理工大学学报(自然科学版),2012,36(03):551.
 DENG Min,HAN Yu-qi.Financial Crisis Early Warning Model for Universities Based on Support Vector Machine[J].Journal of Nanjing University of Science and Technology,2012,36(05):551.
[2]张玉珍,何新,王建宇,等.一种基于SVM的高效球门检测方法[J].南京理工大学学报(自然科学版),2010,(01):13.
 ZHANG Yu-zhen,HE Xin,WANG Jian-yu,et al.Efficient Goal-mouth Detection Method Based on SVM[J].Journal of Nanjing University of Science and Technology,2010,(05):13.
[3]朱宁,冯志刚,王祁,等.基于小生境遗传算法的支持向量机分类器参数优化[J].南京理工大学学报(自然科学版),2009,(01):16.
 ZHU Ning,FENG Zhi-gang,WANG Qi.Parameter Optimization of Support Vector Machine for Classification Using Niche Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(05):16.
[4]栾英宏,李跃华.基于模糊支持向量机的一维距离像识别[J].南京理工大学学报(自然科学版),2009,(03):375.
 LUAN Ying-hong,LI Yue-hua.One-dimensional Range Profile Recognition Based on FSVM[J].Journal of Nanjing University of Science and Technology,2009,(05):375.
[5]张培林,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报(自然科学版),2009,(04):464.
 ZHANG Bei-lin,QIAN Lin-fang,CAO Jian-jun,et al.Parameter Optimization of Support Vector Machine Based on Ant Colony Optimization Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(05):464.
[6]张琨,曹宏鑫,衷宜,等.网络入侵检测中一种新型SVM特征加权分类方法[J].南京理工大学学报(自然科学版),2008,(02):231.
 ZHANG Kun,CAO Hong-xin,ZHONG Yi,et al.New SVM Weighted Feature Classification Method in Network Intrusion Detection[J].Journal of Nanjing University of Science and Technology,2008,(05):231.
[7]杨静宇,魏兴国,孙怀江.一种快速SVM学习算法[J].南京理工大学学报(自然科学版),2003,(05):530.
 YangJingyu WeiXingguo SunHuaijiang.A Fast SVM Learning Algorithm[J].Journal of Nanjing University of Science and Technology,2003,(05):530.
[8]张 琨,等.一种基于SVM的网络入侵检测模型[J].南京理工大学学报(自然科学版),2007,(04):403.
 ZHANG Kun,CAO Hong-xin,LIU Feng-yu,et al.SVM-based Network Intrusion Detection Model[J].Journal of Nanjing University of Science and Technology,2007,(05):403.
[9]臧希喆,赵杰,蔡鹤皋,等.面向网络遥操作的多传感器集成手爪的设计[J].南京理工大学学报(自然科学版),2006,(01):38.
 ZANG Xi-zhe,ZHAO Jie,CAI He-gao.Design of Multisensory Gripper for Internet-based Teleoperation[J].Journal of Nanjing University of Science and Technology,2006,(05):38.
[10]张浩然,汪晓东,张长江,等.一种鲁棒回归支持向量机及其学习算法[J].南京理工大学学报(自然科学版),2006,(03):311.
 ZHANG Hao-ran,WANG Xiao-dong,ZHANG Chang-jiang.Robust Regression SVM and Its Learning Algorithm[J].Journal of Nanjing University of Science and Technology,2006,(05):311.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(60572010)  作者简介:冯志刚(1980 - ) ,男,河北石家庄人,博士生,主要研究方向:自确认传感器技术,传感器故障诊断, E_mail: fzg1023@yeah. net。
更新日期/Last Update: 2012-12-19