[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339-343.
 LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(03):339-343.
点击复制

改进型遗传算法在弹丸结构优化设计中的应用
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年03期
页码:
339-343
栏目:
出版日期:
2009-06-30

文章信息/Info

Title:
Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure
作者:
李克婧;张小兵;
南京理工大学动力工程学院, 江苏南京210094
Author(s):
LI Ke-jingZHANG Xiao-bing
School of Power Engineering,NUST,Nanjing 210094,China
关键词:
遗传算法 遗传算子 弹丸 弹丸结构 优化
Keywords:
genetic algorithms genetic operators projectiles projectile structures optimization
分类号:
TJ410
摘要:
为寻求一种既善于求解复杂模型又具有智能特征的优化算法进行弹丸结构优化设计,将基于实数编码方式的遗传算法与小生境最优保留策略相结合,同时对遗传操作做相应改进,并利用海明距离进行罚函数淘汰运算。采用改进后的遗传算法建立具有代表性的某榴弹弹丸结构优化设计模型,通过仿真得到优化方案。优化后的弹丸外形更有助于减小阻力,飞行时间较优化前缩短5.3%。仿真结果表明改进型的遗传算法用于模型复杂的弹丸结构优化设计是有效可行的,为实际弹丸结构设计提供了理论参考。
Abstract:
To solve the complex models of projectile structures,an intelligent optimization method is put forward.An improved genetic operator based on real coding is used,including the niche concept and the best-keeping after operation of the genetic operators in each.Hamming distance is used to replace the worse individual of current generation by the best one of the father generation.Taking a projectile’s structure design for example,and comparing the optimization algorithm with the original one,the numerical simulations show that the projectile’s structure has better shape to reduce the drag,with the flying time shortened by 5.3%.The improved genetic algorithm is more effective in realizing the global optimization and promoting evolution efficiency,and has stronger adaptability in solving complex optimization problems.

参考文献/References:

[ 1] 金志明. 枪炮内弹道学[M ]. 北京: 北京理工大学出版社, 2004. 10- 11.
[ 2] Jiang Z, Takayam a K, Skew s B W. W ave interac tion fo llow ing the em ergence o f a superson ic pro jec tile from a tube[ A] . 17th Interna tiona l Sym po sium on Ballistics [ C ]. M idrand, Sou th Africa: IBC, 1998. 9- 16.
[ 3] Sakamoto K, M atsunnaga K, Fukushim a J, et a.l Num er ica l analysis o f the propagating b last wave in a fir ing range[ A ]. 19th International Symposium on Ba llistics [ C ]. Interlaken, Sw itzer land: IBC, 2001. 289- 296.
[ 4] A ibarow A V, Babayev D B, M ironov A A. Num er ica l simu lation o f 3D m uzzle brake and m issile launcher flow fie ld in the presence o fm ovab le objects[ A]. 20 th Inte rnational Sym posium on Ballistics [ C ] . Orlando, USA: IBC, 2002. 226- 232.
[ 5] 尤国钊, 魏琪. 膛口流场的数值模拟[ J] . 爆炸与冲击, 1989, 9( 3): 254- 260.
[ 6] 马大为. 含复杂波系的膛口非定常流场[ D] . 南京: 南京理工大学图书馆, 1991.
[ 7] 乐贵高, 马大为, 冯勇, 等. 某火炮膛口流场数值仿真[ J]. 兵工学报, 2004, 25( 1): 19- 22.
[ 8] 代淑兰, 许厚谦, 孙磊. 含运动边界的膛口流场数值模拟[ J]. 弹道学报. 2007, 19( 3): 93- 96.
[ 9] 陶文铨. 数值传热学[M ]. 第2版. 西安: 西安交通大学出版社, 2001. 428.

相似文献/References:

[1]张俊芳,秦红霞,贾 晋,等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版),2009,(06):801.
 ZHANG Jun-fang,QIN Hong-xia,JIA Jin,et al.Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(03):801.
[2]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(03):800.
[3]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(03):0.
[4]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
 WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(03):346.
[5]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453.
 LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(03):453.
[6]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
 ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(03):444.
[7]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
 KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(03):490.
[8]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
 YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(03):580.
[9]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]

备注/Memo

备注/Memo:
基金项目: 教育部优秀人才支持计划( NCET040509); 高校博士学科点基金( 20060288019 ); 江苏省自然科学基金 ( BK2007531)
作者简介: 李克婧( 1983- ) , 女, 博士生, 主要研究方向: 现代内弹道理论及应用, E-mail :Kejing-123@ 163. com;
通讯作者: 张小兵( 1968- ), 男, 教授, 博士生导师, 主要研究方向: 现代内弹道理论及应用, E-m a il :zhangxb@ m ail .njust. edu. cn。
更新日期/Last Update: 2012-11-19