[1]张俊芳,秦红霞,贾 晋,等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版),2009,(06):801-805.
 ZHANG Jun-fang,QIN Hong-xia,JIA Jin,et al.Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(06):801-805.
点击复制

基于改进遗传算法的AGC机组优化组合研究
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2009年06期
页码:
801-805
栏目:
出版日期:
2009-12-30

文章信息/Info

Title:
Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm
作者:
张俊芳 1 秦红霞 2 贾 晋 3 吴军基 1
1.南京理工大学动力工程学院,江苏南京210094; 2. 北京四方继保自动化股份有限公司, 北京100085; 3. 安徽省巢湖供电公司调度所,安徽巢湖238000
Author(s):
ZHANG Jun-fang1QIN Hong-xia2JIA Jin3WU Jun-ji1
1.School of Power Engineering,NUST,Nanjing 210094,China;2.Beijing Sifang Automation Co.,Ltd.,Beijing 100085,China;3.Dispatching Station,Anhui Provincial Chaohu Electric Power Company,Chaohu 238000,China
关键词:
遗传算法 等微增法 机组优化组合 自动发电控制
Keywords:
genetic algorithm principle of equal incremental rate generator unit commitment automatic generation control
分类号:
TM73
摘要:
为降低发电成本,该文对自动发电控制(AGC)机组优化组合问题进行了研究。基于改进遗传算法,建立了包含AGC的机组优化组合模型;针对遗传算法存在的不足,结合包含AGC机组优化组合模型的特殊性,提出了可变长二进制编码;设计了专门的遗传操作,并采用等微增法对其中的连续变量进行了处理。将所研究的算法和模型应用于包含16台机组24时段的机组优化系统中,仿真结果表明该改进遗传算法的计算结果优于实数编码方法结果11.33%,并在搜索区间及收敛速度等方面都具有较好的性能,适用于大、中型发电系统。
Abstract:
To reduce the generating cost,a method for generator unit commitment including automatic generation control(AGC) is studied here.Based on the improved genetic algorithm,a new model of generator unit commitment including AGC is established.For the existing deficiencies of the standard genetic algorithm and particularity of the model on generator unit commitment including AGC,a variable-length binary encoding is proposed and a special genetic operation is designed,in which the principle of equal incremental rate is used for the continuous variables.The simulations of the 16-machine and 24-hour system show that the results from the improved genetic algorithms and mode optimize 11.33% compared with the results from real encoding.A preferable performance is achieved in search range and convergence speed.The method is suitable for large and medium generating systems.

参考文献/References:

[ 1] 余廷芳, 林中达. 部分解约束算法在机组负荷优化组合中的应用[ J]. 中国电机工程学报, 2009, 29( 2): 107-112.
[ 2] Valenzuela J, SmithAE. A seededmemetic algorithm for large unit commitment problems[ J]. Journal of Heuristics, 2002, 8( 2): 173-195.
[ 3] 李铁苍, 周黎辉,张光炜, 等. 基于粒子群算法的火电厂机组负荷优化分配[ J]. 华北电力大学学报, 2008, 35( 1): 44-47.
[ 4] 贾德香, 程浩忠,熊虎岗, 等. 考虑控制性能标准的 AGC机组经济补偿研究[ J]. 中国电机工程学报, 2007, 27( 31): 52-56.
[ 5] 王民量, 张伯明, 夏清. 考虑多种约束条件的机组组合新算法[ J]. 电力系统自动化, 2000, 24( 12): 29- 34.
[ 6] WalshMP, O. MalleyMJ. Augmentedhopfieldne-t work for unit commitment and economic dispatch[ J]. IEEETransonPower Systems, 1997, 12( 4): 1765-1774.
[ 7] 吴金华, 吴耀武,熊信艮, 等. 机组优化组合问题的随机tabu搜索算法[ J]. 电网技术, 2003, 27( 10): 35- 38.
[ 8] 范宏, 韦化. 改进遗传算法及其在机组优化组合中的应用[ J]. 电力系统及其自动化学报, 2004, 16( 4): 46-50.
[ 9] 张振宇, 葛少云, 刘自发. 粒子群优化算法及其在机组优化组合中应用[ J]. 电力自动化设备, 2006, 26( 5): 28- 31.
[ 10] 吴金华, 吴耀武, 熊信艮. 基于退火演化算法和遗传算法的机组优化组合算法[ J]. 电网技术, 2003, 27( 1): 26- 29.

相似文献/References:

[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339.
 LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(06):339.
[2]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(06):800.
[3]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(06):0.
[4]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
 WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(06):346.
[5]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453.
 LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(06):453.
[6]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
 ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(06):444.
[7]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
 KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(06):490.
[8]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
 YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(06):580.
[9]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(06):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]

备注/Memo

备注/Memo:
作者简介: 张俊芳( 1965- ), 女,副教授, 主要研究方向:电力系统优化、运行与控制, E-mail:zjf807@163. com。
更新日期/Last Update: 2012-11-19