[1]张玉珍,何新,王建宇,等.一种基于SVM的高效球门检测方法[J].南京理工大学学报(自然科学版),2010,(01):13-18.
 ZHANG Yu-zhen,HE Xin,WANG Jian-yu,et al.Efficient Goal-mouth Detection Method Based on SVM[J].Journal of Nanjing University of Science and Technology,2010,(01):13-18.
点击复制

一种基于SVM的高效球门检测方法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年01期
页码:
13-18
栏目:
出版日期:
2010-02-28

文章信息/Info

Title:
Efficient Goal-mouth Detection Method Based on SVM
作者:
张玉珍;何新;王建宇;戴跃伟;范柏超;
南京理工大学自动化学院
Author(s):
ZHANG Yu-zhenHE XinWANG Jian-yuDAI Yue-weiFAN Bai-chao
School of Automation,NUST,Nanjing 210094,China
关键词:
球门检测 支持向量机 视频检索 Top-Hat变换
Keywords:
goal-mouth detection support vector machine video retrieval Top-Hat transform
分类号:
TP391.41
摘要:
为了有效地将足球视频中具有复杂背景的球门检测出来,该文提出一种基于支持向量机(Support vectormachine,SVM)的球门检测算法。首先对于视频图像,利用Top-Hat变换突出白色,得到彩色边缘图像,并对彩色边缘图像灰度化、二值化和形态学连通分析,接着在此基础上提取视频图像中前两根最长并满足一定条件的垂直方向连通的垂线段作为候选球柱,然后计算特征向量,最后利用SVM的强大学习能力进行球门检测。实验证实该方法不仅检测效率很高,而且比已有的球门检测算法有更强的鲁棒性和适应性。
Abstract:
To efficiently detect a goal-mouth with complicated backgrounds in soccer video,this paper proposes a goal-mouth detection algorithm based on support vector machine(SVM).For each frame,a Top-Hat transform is used to enhance white color and the achieved RGB image is converted to a grayscale intensity image and then converted to a binary image.Based on the morphologic connection analysis,the two longest vertical lines meeting some conditions are achieved and seen as potential goalposts and the feature vector can be computed.With the help of strong study ability from SVM,the goal-mouth is detected.Experiments prove that this algorithm is not only efficient,but also has higher robustness and is more flexible compared with the existing algorithms for goal-mouth detection.

参考文献/References:

[ 1] ?? YangY, Lin S X, Zhang Y D, et a.l H igh lights extrac??tion in soccer videos based on goa l??mouth detection[ A].Proc o f the 9th Internationa l Symposium on S igna l Pro??cessing and Its Applications[ C]. Shar jah, 2007: 1- 4.
[ 2] Yow D, Yeo B L, YeungM, et a ls. Analysis and pres??entation of soccer high lights from dig ita l v ideo [ A ].Proc of ACCV[ C]. [ s. L. ]: [ s. n. ], 1995.
[ 3] Wan KW, Yan X, Yu X G, et a.l Rea l??tmi e goal??mouthdetection in MPEG soccer v ideo [ A ]. Proc o f the 11thACM International Conference on M ultmi ed ia [ C ].Berkeley, Ca lifornia, USA: [ s. n. ], 2003: 311- 314.
[ 4] 庄越挺, 刘骏伟, 吴飞, 等. 基于支持向量机的视频字幕自动定位与提取[ J]. 计算机辅助设计与图形学学报, 2002, 14( 8) : 750- 771.
[ 5] 刘国翌, 杜威, 李华. 足球场地标志线的自动提取[ J]. 计算机辅助设计与图形学学报, 2003,15( 7): 870- 874.
[ 6] 蔡群, 陆松年, 杨树堂. 基于音视特征的视频内容检测方法[ J]. 计算机工程, 2007, 33( 22): 240- 242.
[ 7] Cover T M. Geom etr ica l and statistical properties o fsystem s and linea r inequa lities w ith app lications inpattern recogn ition [ J]. IEEE Transac tions on E lec??tronic Com pute rs, 1965, 14( 3): 326- 334.
[ 8] Cortes C, Vapn ik V. Support v ec tor netw orks [ J].M achine Learning, 1995, 20( 3): 273- 297.
[ 9] Vapnik V. The nature o f sta tistica l learning theory[M ].New Yo rk: Springer, 1995.
[ 10] Courant R, H ilbert D. M ethods o fm athem atical phys??ics, Vo lum e 1[M ]. New York: Intersc ience Publish??e rs Inc, 1953.
[ 11] 周艺华, 曹元大, 张龙飞. 一种新的基于对象的足球视频镜头分类方案[ J] . 计算机工程与应用,2005, 34: 229- 232.
[ 12] 闫龙川, 杜军. 基于SVM 的足球场地禁区检测[ J].计算机应用, 2007( 12): 80- 90.

相似文献/References:

[1]邓敏,韩玉启.基于支持向量机的大学财务困境预警模型[J].南京理工大学学报(自然科学版),2012,36(03):551.
 DENG Min,HAN Yu-qi.Financial Crisis Early Warning Model for Universities Based on Support Vector Machine[J].Journal of Nanjing University of Science and Technology,2012,36(01):551.
[2]朱宁,冯志刚,王祁,等.基于小生境遗传算法的支持向量机分类器参数优化[J].南京理工大学学报(自然科学版),2009,(01):16.
 ZHU Ning,FENG Zhi-gang,WANG Qi.Parameter Optimization of Support Vector Machine for Classification Using Niche Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(01):16.
[3]栾英宏,李跃华.基于模糊支持向量机的一维距离像识别[J].南京理工大学学报(自然科学版),2009,(03):375.
 LUAN Ying-hong,LI Yue-hua.One-dimensional Range Profile Recognition Based on FSVM[J].Journal of Nanjing University of Science and Technology,2009,(01):375.
[4]张培林,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报(自然科学版),2009,(04):464.
 ZHANG Bei-lin,QIAN Lin-fang,CAO Jian-jun,et al.Parameter Optimization of Support Vector Machine Based on Ant Colony Optimization Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(01):464.
[5]张琨,曹宏鑫,衷宜,等.网络入侵检测中一种新型SVM特征加权分类方法[J].南京理工大学学报(自然科学版),2008,(02):231.
 ZHANG Kun,CAO Hong-xin,ZHONG Yi,et al.New SVM Weighted Feature Classification Method in Network Intrusion Detection[J].Journal of Nanjing University of Science and Technology,2008,(01):231.
[6]冯志刚,王祁,徐涛,等.基于小波包和支持向量机的传感器故障诊断方法[J].南京理工大学学报(自然科学版),2008,(05):609.
 FENG Zhi-gang,WANG Qi,XU Tao,et al.Sensor Fault Diagnosis Based on Wavelet Packet and Support Vector Machines[J].Journal of Nanjing University of Science and Technology,2008,(01):609.
[7]杨静宇,魏兴国,孙怀江.一种快速SVM学习算法[J].南京理工大学学报(自然科学版),2003,(05):530.
 YangJingyu WeiXingguo SunHuaijiang.A Fast SVM Learning Algorithm[J].Journal of Nanjing University of Science and Technology,2003,(01):530.
[8]张 琨,等.一种基于SVM的网络入侵检测模型[J].南京理工大学学报(自然科学版),2007,(04):403.
 ZHANG Kun,CAO Hong-xin,LIU Feng-yu,et al.SVM-based Network Intrusion Detection Model[J].Journal of Nanjing University of Science and Technology,2007,(01):403.
[9]臧希喆,赵杰,蔡鹤皋,等.面向网络遥操作的多传感器集成手爪的设计[J].南京理工大学学报(自然科学版),2006,(01):38.
 ZANG Xi-zhe,ZHAO Jie,CAI He-gao.Design of Multisensory Gripper for Internet-based Teleoperation[J].Journal of Nanjing University of Science and Technology,2006,(01):38.
[10]张浩然,汪晓东,张长江,等.一种鲁棒回归支持向量机及其学习算法[J].南京理工大学学报(自然科学版),2006,(03):311.
 ZHANG Hao-ran,WANG Xiao-dong,ZHANG Chang-jiang.Robust Regression SVM and Its Learning Algorithm[J].Journal of Nanjing University of Science and Technology,2006,(01):311.

备注/Memo

备注/Memo:
基金项目: 南京理工大学科技发展基金( XKF09023)?? 作者简介: 张玉珍( 1973- ), 女, 博士生, 讲师, 主要研究方向: 基于语义的视频检索, 图像处理及模式识别, Ema il: o lindazh@ 163. com。
更新日期/Last Update: 2012-11-02