[1]刘永建,朱剑英,曾捷,等.改进BP神经网络在发动机性能趋势分析和故障诊断中的应用[J].南京理工大学学报(自然科学版),2010,(01):24-29.
 LIU Yong-jian,ZHU Jian-ying,ZENG Jie.Improved BP Neural Network System for Engine Performance Trend Analysis and Fault Diagnosis[J].Journal of Nanjing University of Science and Technology,2010,(01):24-29.
点击复制

改进BP神经网络在发动机性能趋势分析和故障诊断中的应用
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
期数:
2010年01期
页码:
24-29
栏目:
出版日期:
2010-02-28

文章信息/Info

Title:
Improved BP Neural Network System for Engine Performance Trend Analysis and Fault Diagnosis
作者:
刘永建;朱剑英;曾捷;
南京航空航天大学民航学院
Author(s):
LIU Yong-jian1ZHU Jian-ying1ZENG Jie2
1.College of Civil Aviation;2.College of Aerospace Engineering,Nanjing University ofAeronautics and Astronautics,Nanjing 210016,China
关键词:
神经网络 蚁群优化算法 Levenberg-Marquardt算法 航空发动机 性能趋势分析 故障诊断
Keywords:
neural network ant colony optimization algorithm Levenberg-Marquardt algorithm aeroengines performance trend analysis fault diagnosis
分类号:
V263.6;TP183
摘要:
针对常规BP神经网络参数的经验式取值方法以及收敛速度慢,容易陷入局部最小点等缺陷,设计了一种改进的神经网络系统,利用蚁群算法优化神经网络连接权初值,并采用LM算法对人工神经网络进行训练,提高了网络的收敛速度,降低了训练误差。将其应用于某型利用ACARS报文实时获取飞机性能参数的发动机趋势分析和故障诊断中,可以快速准确地实现对发动机的性能趋势分析和复杂故障的诊断。最后通过仿真,对算法进行检验,结果表明改进算法的诊断置信度比改进前高。
Abstract:
Aiming at the disadvantage of conventional BP neural network,such as selecting parameter values by the empirical method,slow convergence speed and easy trap into local minimum points,this paper designs an improved BP neural network system.In order to improve the network convergence rate and reduce the training error,this paper optimizes the initial connecting weight value of neural network by the use of ant colony algorithm and trains artificial neural network by Levenberg-Marquardt(LM) algorithm.The algorithm is applied to an engine for access to the aircraft performance parameters of aeroengine trend analysis and fault diagnosis by using ACARS messages in real time.It can analyse the aeroengine performance trend and diagnose complex fault quickly and accurately.Finally,the improved algorithm is tested through simulation and the results show that the improved algorithm can get higher confidence level than the previous algorithm.

参考文献/References:

[ 1] H ag anM T, Demuth H B, BealeM H. 神经网络设计[M ]. 戴葵, 等译. 北京: 机械工业出版社, 2002:45- 78.
[ 2] 宋红英. 基于蚁群神经网络的发动机故障诊断专家系统的研究[ D ]. 北京: 中国农业大学图书馆,2005: 36- 43.
[ 3] 冯今朝, 王仲生. 基于LM 优化算法的神经网络在航空发动机转子故障诊断中的应用[ J] . 宇航计测技术, 2007( 4): 18- 21.[ 4 ] 姚华, 单贵平, 孙健国. 基于卡尔曼滤波器及神经网络的发动机故障诊断[ J]. 航空动力学报, 2008,23( 6): 1112- 1117.
[ 5] M ishra D, Y adav A, Ray S, et a .l Levenberg-M a rquardtlearn ing a lgo rithm for Integrate-and-F ireNeuron-M ode l[ J] . N eural In fo rm ation Processing-Letters andRev iew s, 2005, 9( 2): 45- 53.
[ 6] 余宾. 基于神经网络的飞机发动机性能趋势预测系统[ J]. 中国制造业信息化, 2008, 37( 11): 58- 63.
[ 7] 陈效华, 魏少华, 常思勤, 等. 基于声强识别的发动机智能化故障诊断系统[ J]. 南京理工大学学报(自然科学版), 2005, 29( 1): 36- 39.
[ 8] Co lorni A, DorigoM, M an iezzo V, e t a .l Distributedoptim ization by ant co lon ies [ A ]. Proceed ing s o f theFirst European Conference on A rtific ia l Life[ C ]. Pa ris:E lsev ie r Pub lishing, 1991: 134- 142.
[ 9] 陈恬, 孙健国, 杨蔚华, 等. 自组织神经网络航空发动机气路故障诊断[ J]. 航空学报, 2003, 24( 1): 46- 48.
[ 10] 陈果, 宋兰琪, 陈立波. 基于神经网络规则提取的航空发动机磨损故障诊断知识获取[ J]. 航空动力学报, 2008, 23( 12): 2170- 2176.
[ 11] 王志, 艾延廷, 沙云东. 基于BP神经网络的航空发动机整机振动故障诊断技术研究[ J]. 仪器仪表学报, 2007, 28( 4) : 168- 171.
[ 12] 陈恬, 孙健国, 郝英. 基于神经网络和证据融合理论的航空发动机气路故障诊断[ J]. 航空学报,2006, 27( 6): 46- 48.

相似文献/References:

[1]何春梅,叶征春,韩牟,等.形态双向联想记忆网络的摄动鲁棒性研究[J].南京理工大学学报(自然科学版),2011,(05):664.
 HE Chun-mei,YE Zheng-chun,HAN Mu,et al.Perturbation Robustness of Morphological Bidirectional Associative Memories Networks[J].Journal of Nanjing University of Science and Technology,2011,(01):664.
[2]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(01):800.
[3]袁军堂,夏玲玲,汪振华,等.灌胶结合面对数控机床动态性能影响研究[J].南京理工大学学报(自然科学版),2012,36(06):0.
 YUAN Jun tang,XIA Ling ling,WANG Zhen hua,et al.Impact of Glued Joint on Dynamic Characteristics of CNC Machine Tool[J].Journal of Nanjing University of Science and Technology,2012,36(01):0.
[4]朱 红,陈清华,刘国岁.高速神经网络HS-K-WTA-2的研究[J].南京理工大学学报(自然科学版),2007,(01):89.
 ZHU Hong,CHEN Qing-hua,LIU Guo-sui.High-speed Neural Network HS-K-WTA-2[J].Journal of Nanjing University of Science and Technology,2007,(01):89.
[5]都洪基,苏炜宏,邓烽.一种基于神经网络的谐波电流抑制方法[J].南京理工大学学报(自然科学版),2003,(01):28.
 DuHongji SuWeihong DengFeng.Adaptive Approach to Detection of the Harmonic Currents on Artificial Neural Network[J].Journal of Nanjing University of Science and Technology,2003,(01):28.
[6]魏荣,卢俊国,李军,等.α阶时延逆系统的小波神经网络实现[J].南京理工大学学报(自然科学版),2001,(04):342.
 WeiRong LuJunguo LiJun WangZhiquan.Realization of α-order Time-delay Inverse Systems Based on Wavelet Neural Networks[J].Journal of Nanjing University of Science and Technology,2001,(01):342.
[7]聂伟荣,朱继南,赵玉霞.基于改进BP网络的地震动信号目标识别[J].南京理工大学学报(自然科学版),2000,(01):20.
 NieWeirong ZhuJinan ZhaoYuxia.Microseismic Signal Targets Identification Based on Improved BP Neural Networks[J].Journal of Nanjing University of Science and Technology,2000,(01):20.
[8]卢云许,陆宝春,张世琪.切片平均分子量神经网络预测模型研究及应用[J].南京理工大学学报(自然科学版),2000,(02):139.
 LuYunxu LuBaochun ZhangShiqi.The Research and Application of Neural Network Predicting Model of Molecule Weight of Casting Slice Belt[J].Journal of Nanjing University of Science and Technology,2000,(01):139.
[9]牛玉刚,杨成梧,赵建丛.基于多步预测的PID型神经网络控制[J].南京理工大学学报(自然科学版),2000,(03):199.
 NiuYugang YangChengwu ZhaoJiancong.A PID-like Neural Network Control Based on Multi-step Prediction[J].Journal of Nanjing University of Science and Technology,2000,(01):199.
[10]赵启林,卓家寿,柳景春.BP网络的BP-G-S学习算法[J].南京理工大学学报(自然科学版),1999,(04):308.
 ZhaoQilin ZhuoJiashou LiuJingchuen.The BP G S Learning Algorithms of BP Network[J].Journal of Nanjing University of Science and Technology,1999,(01):308.

备注/Memo

备注/Memo:
作者简介: 刘永建( 1972- ), 男, 博士生, 主要研究方向: 远程实时故障诊断、决策, E-m a il: ly j3924111@ sina. com;通讯作者: 朱剑英( 1937- ) , 男, 教授, 博士生导师, 主要研究方向: 人工智能与决策, E-m a il: zjyao@ nuaa.edu. cn。
更新日期/Last Update: 2012-11-02