[1]贾 立,杨爱华,邱铭森.基于辅助模型递推最小二乘法的Hammerstein模型 多信号源辨识[J].南京理工大学学报(自然科学版),2014,38(01):34-39.
 Jia Li,Yang Aihua,Qiu Minsen.Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model[J].Journal of Nanjing University of Science and Technology,2014,38(01):34-39.
点击复制

基于辅助模型递推最小二乘法的Hammerstein模型 多信号源辨识
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
38卷
期数:
2014年01期
页码:
34-39
栏目:
出版日期:
2014-02-28

文章信息/Info

Title:
Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model
作者:
贾 立1杨爱华1邱铭森2
1.上海大学 机电工程与自动化学院,上海市电站自动化技术重点实验室,上海 200072; 2.新加坡国立大学 工程学院,新加坡 119260
Author(s):
Jia Li1Yang Aihua1Qiu Minsen2
1.Shanghai Key Laboratory of Power Station Automation Technology,College of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China; 2.Faculty of Engineering,National University of Singapore,Singapore 119260
关键词:
Hammerstein模型 辅助模型 最小二乘法 参数辨识 多信号源
Keywords:
Hammerstein models auxiliary models least square algorithm parameter identification multi-signals
分类号:
TP273
摘要:
针对含有过程噪声的Hammerstein模型,提出了一种基于辅助模型递推最小二乘法的Hammerstein模型多信号源辨识方法。采用多信号源实现Hammerstein模型的可辨识性和参数估计分离问题; 将辅助模型引入到串联模块的最小二乘法辨识中,得到Hammerstein模型参数的无偏估计。仿真结果验证了该算法的有效性。
Abstract:
A multi-signal identification algorithm based on auxiliary model recursive least square algorithm for Hammerstein model with process noise is proposed here.The multi-signals are used to realize the identification and separation of Hammerstein model.The concept of auxiliary model is employed into the least square algorithm to obtain the unbiased estimation of the Hammerstein model.The simulation results show the efficiency of the proposed method.

参考文献/References:

[1] 侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
Hou Zhongsheng,Xu Jianxin.On data-driven control theory:the state of the art and perspective[J].Acta Automatica Sinica,2009,35(6):650-667.
[2]Fang F,Reed E,Dickason D K,et al.Technology review of multi-agent systems and tools[R].Navy Personnel Research Studies and Technology Millington TN,2005.
[3]Chen H F.Pathwise convergence of recursive identification algorithms for Hammerstein systems[J].IEEE Transactions on Automatic Control,2004,49(10):1641-1649.
[4]Chen Xingmin.Recursive identification for MIMO Hammerstein systems[J].IEEE Transactions on Automatic Control,2010,56(4):895-902.
[5]Westwick D T,Kearney R E.Separable least squares identification of nonlinear Hammerstein models:Application to stretch reflex dynamics[J].Annals of Biomedical Engineering,2001,29(8):707-718.
[6]Sun L,Liu W,Sano A.Identification of a dynamical system with input nonlinearity[J].IEE Proceedings of Control Theory and Applications IET,1999,146(1):41-51.
[7]Wang J,Sano A,Shook D,Chen T,et al.A blind approach to closed-loop identification of Hammerstein systems[J].Int J Control,2007,80(2):302-313.
[8]Bai E W.Identification of linear systems with hard input nonlinearities of known structure[J].Automatica,2002,38(5):853-860.
[9]Krzy(·overz)ak A.On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate[J].Signal Processing,1996,52(3):299-321.
[10]Boutayeb M,Aubry D,Darouach M.A robust and recursive identification method for MISO Hammerstein model[A].Control'96,UKACC International Conference on IET[C].Washington D C:IEEE,1996:234-239.
[11]Ahmadi M,Mojallali H.Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials[J].Applied Mathematical Modelling,2011,35(4):1969-1982.
[12]Rangan S,Wolodkin G,Poolla K.New results for Hammerstein system identification[A].Proceedings of the 34th IEEE Conference on Decision and Control.IEEE[C].Washington D C,USA:IEEE,1995:697-702.
[13]Jalaleddini K,Kearney R E.An identification algorithm for Hammerstein systems using subspace method[A].American Control Conference(ACC),2011.IEEE[C].San Francisco,USA:IEEE,2011:4793-4797.
[14]Zhu Y.Estimation of an N-L-N Hammerstein-Wiener model[J].Automatica,2002,38(9):1607-1614.
[15]贺尚红,赵天林,石芳.输入输出测量噪声干扰下连续Hammerstein模型参数直接辨识[J].中国机械工程,2012,23(4)458-463.
He Shanghong,Zhao Tianlin,Shi Fang.Direct parameter identification of continuous-time Hammerstein model with input/output measurement noises[J].Chinese Journal of Mechanical Engineering,2012,23(4)458-463.
[16]Ding Feng,Yang Shi,Tongwen Chen.Auxiliary model-based least-squares identification methods for Hammerstein output-error systems[J].Systems & Control Letters,2007,56(5):373-380.
[17]Sung S W.System identification method for Hammerstein processes[J].Industrial & Engineering Chemistry Research,2002,41(17):4295-4302.
[18]丁峰.辅助模型辨识思想与方法[J].南京信息工程大学学报(自然科学版),2011,3(4):289-318.
Ding Feng.Auxiliary model identification idea and methods[J].Journal of Nanjing University of Information Science and Technology(Natuaal Science),2011,3(4):289-318.
[19]丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200.
Ding Feng.Convergence Analysis of Multivariable Systems Auxiliary Model Identification Method[J].Control Theory and Applications,1997,14(2):192-200.
[20]Ding F,Chen T.Combined parameter and output estimation of dual-rate systems using an auxiliary model[J].Automatica,2004,40(10):1739-1748.
[21]Ding F,Ding J.Least squares parameter estimation for systems with irregularly missing data[J].International Journal of Adaptive Control and Signal Processing,2010,24(7):540-553.
[22]Ling W M,Rivera D E.Control relevant model reduction of Volterra series models[J].Journal of Process Control,1998,8(2):79-88.
[23]Maner B R,Doyle III F J,Ogunnaike B A,et al.Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models[J].Automatica,1996,32(9):1285-1301.

相似文献/References:

[1]钟怀兵,熊伟丽.一种带奇异点检测和补偿的GPR在线软测量方法[J].南京理工大学学报(自然科学版),2017,41(04):503.[doi:10.14177/j.cnki.32-1397n.2017.41.04.016]
 Zhong Huaibing,Xiong Weili.Online soft sensor method based on GPR with test andcompensation for singular point[J].Journal of Nanjing University of Science and Technology,2017,41(01):503.[doi:10.14177/j.cnki.32-1397n.2017.41.04.016]

备注/Memo

备注/Memo:
收稿日期:2013-06-08 修回日期:2013-08-12
基金项目:国家自然科学基金(61004019; 61374044); 上海市科委国际合作项目(12510709400); 上海市教委创新重点项目(14ZZ088); 上海大学”十一五”211建设项目资助
作者简介:贾立(1975-),女,博士,教授,主要研究方向:复杂非线性系统的建模、优化与控制,E-mail:jiali@staff.shu.edu.cn。
引文格式:贾立,杨爱华,邱铭森.基于辅助模型递推最小二乘法的Hammerstein模型多信号源辨识[J].南京理工大学学报,2014,38(1):34-39.
投稿网址:http://njlgdxxb.paperonce.org
更新日期/Last Update: 2014-02-28