[1]刘华军,赖少发.汽车毫米波雷达目标跟踪的快速平方根CKF算法[J].南京理工大学学报(自然科学版),2016,40(01):56.
 Liu Huajun,Lai Shaofa.Fast square root CKF for automotive millimeter-waveradar target tracking[J].Journal of Nanjing University of Science and Technology,2016,40(01):56.
点击复制

汽车毫米波雷达目标跟踪的快速平方根CKF算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
40卷
期数:
2016年01期
页码:
56
栏目:
出版日期:
2016-02-29

文章信息/Info

Title:
Fast square root CKF for automotive millimeter-waveradar target tracking
作者:
刘华军赖少发
南京理工大学 计算机科学与工程学院,江苏 南京 21009
Author(s):
Liu HuajunLai Shaofa
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
毫米波雷达 目标跟踪 平方根容积卡尔曼滤波器
Keywords:
millimeter-wave radar target tracking square root cubature Kalman filter
分类号:
TN958
摘要:
平方根容积卡尔曼滤波器(Cubature Kalman filter,CKF)算法直接以协方差阵三角分解因子进行滤波过程的预测和更新,保证协方差矩阵非负性,避免了滤波器发散,但预测更新都基于采样点,仍然具有较高的计算负荷。该文提出了一种适用于汽车毫米波雷达目标跟踪的快速平方根CKF算法,在预测阶段,利用Kalman滤波器方程进行状态和协方差阵预测,在更新阶段,利用预测值构造Sigma点,并以平方根CKF滤波器方程更新目标的状态和协方差阵。仿真实验表明:该文算法运算效率和滤波精度比平方根CKF、平方根无迹卡尔曼滤波(Unscented Kalman filter,UKF)等算法均有不同程度提高,适用于汽车毫米波雷达嵌入式目标跟踪软件。
Abstract:
QR decomposition of error covariance matrix of the square root cubature Kalman Filter(CKF)is directly used for filter’s prediction and updating,which can avoid breaking down when the covariance matrix is non-positive-definite.However,the prediction and updating process based on sigma-point propagation leads to obviously high computational burden.In this paper,a fast square root CKF method for automotive millimeter-wave radar target tracking is proposed.In this method,the Kalman equations are used to predict the state means and covariance during the prediction process,while square root CKF equations are used to compute the Kalman gain and update the state means and covariance during the updating process.Many experimental results show,either on efficiency or precision,our proposed method is superior to the similar square root unscented Kalman filter(UKF)and square root CKF algorithms.

参考文献/References:

[1] Darms M.Data fusion of environment-perception sensors for ADAS[M].[S.L.]:Handbook of Driver Assistance Systems,2015:1-13.
[2]Fleming W.Forty-year review of automotive electronics:A unique source of historical information on automotive electronics[J].IEEE Vehicular Technology Magazine,2015,10(3):89-90.
[3]Kim Daebong,Hong Sunmog.Multiple-target tracking and track management for an FMCW radar networks[J].EURASIP Journal on Advances in Signal Processing,2013(1):1-9.
[4]Han Seulki,Ra Wonsang,Whang Ickho,et al.Linear recursive automotive target tracking filter for advanced collision warning systems[J].Appl Math Inf,2014,8(3):1145-1151.
[5]Gustafsson F,Hendeby G.Some relations between extended and unscented Kalman filters[J].IEEE Transactions on Signal Processing,2012,60(2):545-555.
[6]Arasaratnam I,Simon H.Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
[7]张文,孙瑞胜.EKF与UKF的性能比较及应用[J].南京理工大学学报,2015,39(5):614-618.

Zhang Wen,Sun Ruisheng.Research on performance comparison of EKF and UKF and their application[J].Journal of Nanjing University of Science and Technology,2015,39(5):614-618.
[8]Zhen Ding,Bhashyam B.Comparison of the unscented and cubature Kalman filters for radar tracking applications[C]//IET International Conference on Radar Systems(Radar 2012).Glasgow,UK:[s.n.],2012:1-5.
[9]郝燕玲,杨峻巍,陈亮,等.平方根容积卡尔曼滤波器[J].弹箭与制导学报,2012:32(2):169-172.
Hao Yanling,Yang Junwei,Chen Liang,et al.Square root cubature Kalman filter[J].Journal of Projectiles,Rockets,Missiles and Guidance,2012:32(2):169-172.
[10]穆静,蔡远利.平方根容积卡尔曼滤波算法及其应用[J].兵工自动化,2011,30(6):11-13.
Mu Jing,Cai Yuanli.Square root cubature Kalman filter algorithm and application[J].Ordnance Industry Automation,2011,30(6):11-13.
[11]肖雷,刘高峰,魏建仁.几种动目标运动模型的跟踪性能对比[J].火力与指挥控制,2005,32(5):106-109.
Xiao Lei,Liu Gaofeng,Wei Jianren.The tracking performance contrast of some kind of maneuvering target motion model[J].Fire Control and Command Control,2005,32(5):106-109.
[12]Yousefi S,Chang Xiaowen,Champagne B.Mobile localization in non-line-of-sight using constrained square-root unscented Kalman filter[J].IEEE Transactions on Vehicular Technology,2015,64(5):2071-2083.

相似文献/References:

[1]程相权,王远钢,郭治.满足滞留度指标的图像波门预测技术研究[J].南京理工大学学报(自然科学版),2001,(04):346.
 ChengXiangquan WangYuangang GuoZhi.Prediction Study of Tracking Window with Specified Residence Index[J].Journal of Nanjing University of Science and Technology,2001,(01):346.
[2]杨春玲,孙泓波,倪晋麟,等.多传感器远距离目标跟踪精度分析[J].南京理工大学学报(自然科学版),1999,(03):53.
 YangChunling SunHongbo NiJinlin LiuGuosui.Research of Multisensor for long Range Target Tracking Accuracy[J].Journal of Nanjing University of Science and Technology,1999,(01):53.
[3]杜 鹃,吴芬芬.高斯混合模型的运动目标检测与跟踪算法[J].南京理工大学学报(自然科学版),2017,41(01):41.[doi:10.14177/j.cnki.32-1397n.2017.41.01.006]
 Du Juan,Wu Fenfen.Movement target tracking algorithm by using Gaussian mixture model[J].Journal of Nanjing University of Science and Technology,2017,41(01):41.[doi:10.14177/j.cnki.32-1397n.2017.41.01.006]
[4]蒋 斌,李超英,李宗谕,等.基于决策树分类的毫米波雷达对电力线的检测[J].南京理工大学学报(自然科学版),2017,41(01):95.[doi:10.14177/j.cnki.32-1397n.2017.41.01.013]
 Jiang Bin,Li Chaoying,Li Zongyu,et al.Millimeter wave radar detection in power line based ondecision tree classification[J].Journal of Nanjing University of Science and Technology,2017,41(01):95.[doi:10.14177/j.cnki.32-1397n.2017.41.01.013]
[5]茅正冲,黄舒伟.基于结构化判别稀疏表示的目标跟踪[J].南京理工大学学报(自然科学版),2018,42(03):271.[doi:10.14177/j.cnki.32-1397n.2018.42.03.003]
 Mao Zhengchong,Huang Shuwei.Structured discriminant sparse representation based object tracking[J].Journal of Nanjing University of Science and Technology,2018,42(01):271.[doi:10.14177/j.cnki.32-1397n.2018.42.03.003]
[6]娄 康,朱志宇,葛慧林.基于目标运动特征的红外目标检测与跟踪方法[J].南京理工大学学报(自然科学版),2019,43(04):455.[doi:10.14177/j.cnki.32-1397n.2019.43.04.011]
 Lou Kang,Zhu Zhiyu,Ge Huilin.Infrared target detection and tracking method based ontarget motion feature[J].Journal of Nanjing University of Science and Technology,2019,43(01):455.[doi:10.14177/j.cnki.32-1397n.2019.43.04.011]

备注/Memo

备注/Memo:
收稿日期:2016-01-09 修回日期:2016-01-18
基金项目:国家”863”高技术研究计划资助项目(2015AA8106043); 国家自然科学基金(61402237,61302156)
作者简介:刘华军(1978-),男,副教授,主要研究方向:汽车毫米波雷达,智能汽车等,E-mail:liuhj@njust.edu.cn。
引文格式:刘华军,赖少发.汽车毫米波雷达目标跟踪的快速平方根CKF算法[J].南京理工大学学报,2016,40(1):56-60.
投稿网址:http://zrxuebao.njust.edu.cn
DOI:10.14177/j.cnki.32-1397n.2016.40.01.009
更新日期/Last Update: 2016-02-29