[1]张孙力,杨慧中.一种基于改进扩张搜索聚类算法的软测量建模方法[J].南京理工大学学报(自然科学版),2017,41(05):574.[doi:10.14177/j.cnki.32-1397n.2017.41.05.006]
 Zhang Sunli,Yang Huizhong.Soft sensor modeling method based on improved expandingsearching clustering algorithm[J].Journal of Nanjing University of Science and Technology,2017,41(05):574.[doi:10.14177/j.cnki.32-1397n.2017.41.05.006]
点击复制

一种基于改进扩张搜索聚类算法的软测量建模方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年05期
页码:
574
栏目:
出版日期:
2017-10-31

文章信息/Info

Title:
Soft sensor modeling method based on improved expandingsearching clustering algorithm
文章编号:
1005-9830(2017)05-0574-07
作者:
张孙力杨慧中
江南大学 教育部轻工过程先进控制重点实验室,江苏 无锡 214122
Author(s):
Zhang SunliYang Huizhong
Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi 214122,China
关键词:
疏密度 阈值 高斯过程回归 扩张搜索聚类算法 软测量建模
Keywords:
densities threshold Gaussian process regression expanding searching clusting algorithm soft sensor modeling
分类号:
TP274
DOI:
10.14177/j.cnki.32-1397n.2017.41.05.006
摘要:
针对传统聚类方法过于依赖数据空间分布和先验知识的缺点,该文提出了一种改进的扩张搜索聚类算法。该算法充分考虑了样本疏密度对聚类效果的影响,根据每个样本点不同的疏密度给予不同的搜索半径,并且引入阈值对不同疏密度的样本点采用不同的聚类方式,以适于各种形状的样本分布。采用这种改进的扩张搜索聚类算法对样本数据进行聚类,并用高斯过程回归(GPR)对各类样本子集分别建立对应的软测量子模型,最后采用开关切换的多模型融合方式得到最终的软测量多模型。以双酚A生产过程结晶单元的仿真结果为例,对装置出口处的苯酚浓度进行软测量建模,获得了较好的实验结果。
Abstract:
An improved expanding searching clustering algorithm is proposed to overcome the shortcomings of the traditional clustering methods relying on data space distribution and prior knowledge too much.In consideration of the effects of the sample density on the searching radlus,the improved algorithm selects different searching radius according to the density of each sample point.For all sample distribution shapes,the threshold value is applied to choose different clustering methods relying on different density points.Sample data is clustered by using the improved expanding searching clustering algorithm.All soft sensor models are built up by Gaussian process regression(GPR).The final model is formed by using the switch fusion mode according to the results of clustering.A sample of a bisphenol-A production crystallization unit is applied to make a simulation for building the soft-sensor model of the phenol concentration at the exit device and the good experiment results are obtained.

参考文献/References:

[1] Jin Huaiping,Chen Xiangguang.Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes[J].Chemical Engineering Science,2015,131:282-303.
[2]Jin Huaiping,Chen Xiangguang.Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J].Chemometrics and Intelligent Laboratory Systems,2016,151:228-244.
[3]孙建平,苑一方.复杂过程的多模型建模方法研究[J].仪器仪表学报,2011,32(1):132-137.
Sun Jianping,Yuan Yifang.Multi-mode modeling approach for complex proces[J].Chinese Journal of Scientific Instrument,2011,32(1):132-137.
[4]王海宁,夏陆岳,周猛飞,等.过程工业软测量中的多模型融合建模方法[J].化工进展,2014,33(12):3157-3163.
Wang Haining,Xia Luyue,Zhou Mengfei,et al.Multi-model fusion modeling method for process industries soft sensor[J].Chemical Industry and Engineering Progress,2014,33(12):3157-3163.
[5]李修亮,苏宏业,褚健.基于在线聚类的多模型软测量建模方法[J].化工学报,2007,58(11):2834-2839.
Li Xiuliang,Su Hongye,Chu Jian.Multiple models soft-sensing technique based on online clustering arithmetic[J].Journal of Chemical Industry and Engineering,2007,58(11):2834-2839.
[6]杨慧中,张文清.基于特征加权模糊聚类的多模型软测量建模[J].控制工程,2011,18(4):524-527.
Yang Huizhong,Zhang Wenqing.Multi-model soft-sensor modeling based on feature weighted fuzzy clustering[J].Control Engineering of China,2011,18(4):524-527.
[7]傅永峰,徐欧官,陈祥华,等.基于多模型动态融合的自适应软测量建模方法[J].高校化学工程学报,2015,29(5):1186-1193.
Fu Yongfeng,Xu Ouguan,Chen Xianghua,et al.An adaptive soft sensor modeling method based on multi-model dynamic fusion[J].Journal of Chemical Engineering of Chinese Universities,2015,29(5):1186-1193.
[8]双翼帆,顾幸生.基于改进的快速搜索聚类算法和高斯过程回归的催化重整脱氯前氢气纯度多模型建模方法[J].化工学报,2016,67(3):765-772.
Shuang Yifan,Gu Xingsheng.Multi-model soft sensor for hydrogen purity in catalytic reforming process based on improved fast search clustering algorithm and Gaussian processes regression[J].CIESE Journal,2016,67(3):765-772.
[9]钟伟民,李杰.基于FCM聚类的气化炉温度多模型软测量建模[J].化工学报,2012,63(12):3951-3955.
Zhong Weimin,Li Jie.A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering[J].CIESE Journal,2012,63(12):3951-3955.
[10]杨会锋,曹洁.基于改进K-均值聚类算法的背景建模方法[J].电子测量与仪器学报,2010,24(12):1114-1118.
Yang Huifeng,Cao Jie.Background modeling method based on the improved K-means clustering algorithm[J].Journal of Electronic Measurement and Instrument,2010,24(12):1114-1118.
[11]彭琛.基于聚类的多模型蒸发过程软测量建模[J].系统仿真学报,2015,27(9):2050-2055.
Peng Chen.Mufti-model soft modeling based on clustering in evaporation process[J].Journal of System Simulation,2015,27(9):2050-2055.
[12]孙茂伟.基于改进仿射传播聚类的多模型软测量建模及应用[J].南京理工大学学报,2016,40(2):204-211.
Sun Maowei.Multi-model soft-sensor modeling based on improved affinity propagation clustering algorithm and application[J].Journal of Nanjing University of Science and Technology,2016,40(2):204-211.
[13]Chen Jinyin,He Huihao.A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data[J].Information Science,2016,45(3):271-293.
[14]陈定三.用于多模型软测量的扩张搜索聚类算法[J].计算机与应用化学,2011,28(4):407-410.
Chen Dingsan.Multiple model soft sensor technique based on expanding search clustering algorithm[J].Computers and Applied Chemistry,2011,28(4):407-410.

相似文献/References:

[1]李敏,罗洪艳,郑小林,等.一种改进的最大类间方差图像分割法[J].南京理工大学学报(自然科学版),2012,36(02):332.
 LI Min,LUO Hong-yan,ZHENG Xiao-lin,et al.Image Segmentation Based on Improved Otsu Algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(05):332.
[2]刘己斌,赵惠昌,谢武涛.小波去噪在伪码定距中的应用[J].南京理工大学学报(自然科学版),2003,(04):376.
 LiuJibin ZhaoHuichang XieWutao.Application of Wavelet Denoising in Distancedetecting with PN Code[J].Journal of Nanjing University of Science and Technology,2003,(05):376.
[3]陆建峰,杨静宇,叶玉坤.一个用于彩色肺癌细胞图像的分割算法[J].南京理工大学学报(自然科学版),2000,(06):481.
 LuJianfeng YangJingyu YeYukun.A Segmentation Algorithm for Color Lung Cancer Cell Image[J].Journal of Nanjing University of Science and Technology,2000,(05):481.
[4]陆建峰,李士进,唐振民,等.基于遗传算法的二维熵方法自动阈值[J].南京理工大学学报(自然科学版),1998,(02):9.
 Lu Jianfeng L i ShijinT ang ZhenminYang Jing yu.The Automatic Thresholding Using Two dimensional Entropy Method with Genetic Algorithms[J].Journal of Nanjing University of Science and Technology,1998,(05):9.
[5]闫敏伦.新型变精度多粒化粗糙集模型[J].南京理工大学学报(自然科学版),2014,38(04):496.
 Yan Minlun.New rough set model:a variable precision multigranulation approach[J].Journal of Nanjing University of Science and Technology,2014,38(05):496.
[6]陈 桂,陈耀忠,林 健,等.机器人逆运动学的微分进化与粒子群优化 BP神经网络求解[J].南京理工大学学报(自然科学版),2014,38(06):763.
 Chen Gui,Chen Yaozhong,Lin Jian,et al.Solving robot inverse kinematics based on differential evolution and particle swarm optimization BP neural network[J].Journal of Nanjing University of Science and Technology,2014,38(05):763.

备注/Memo

备注/Memo:
收稿日期:2016-09-29 修回日期:2017-03-11

基金项目:国家自然科学基金(61273070); 江苏省高校优势学科建设工程资助项目
作者简介:张孙力(1992-),男,硕士生,主要研究方向:软测量建模,E-mail:767068275@qq.com; 通讯作者:杨慧中(1955-),女,博士,教授,主要研究方向:复杂过程建模和优化控制,E-mail:yhz_jn@163.com。
引文格式:张孙力,杨慧中.一种基于改进扩张搜索聚类算法的软测量建模方法[J].南京理工大学学报,2017,41(5):574-580.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-09-30