[1]顾廷炜,孔德仁.基于GA-BP神经网络的落锤液压动标装置准静态校准模型[J].南京理工大学学报(自然科学版),2017,41(05):581.[doi:10.14177/j.cnki.32-1397n.2017.41.05.007]
 Gu Tingwei,Kong Deren.Quasi-static calibration model of drop hammer hydraulic dynamicpressure calibration device based on GA-BP neural network[J].Journal of Nanjing University of Science and Technology,2017,41(05):581.[doi:10.14177/j.cnki.32-1397n.2017.41.05.007]
点击复制

基于GA-BP神经网络的落锤液压动标装置准静态校准模型()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年05期
页码:
581
栏目:
出版日期:
2017-10-31

文章信息/Info

Title:
Quasi-static calibration model of drop hammer hydraulic dynamicpressure calibration device based on GA-BP neural network
文章编号:
1005-9830(2017)05-0581-06
作者:
顾廷炜孔德仁
南京理工大学 机械工程学院,江苏 南京 210094
Author(s):
Gu TingweiKong Deren
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
遗传算法反向传播神经网络 落锤装置 压力峰值 压力脉宽 准静态校准模型
Keywords:
gennetic algorithm-back propagation neural network drop hammer devices pressure peak value pressure pulse width quasi-static calibration models
分类号:
TP212; TJ012; TH812
DOI:
10.14177/j.cnki.32-1397n.2017.41.05.007
摘要:
在对测量冲击波用压电式压力传感器进行准静态校准时,通常采用落锤液压动标装置。为快速准确地调节落锤装置的工作参数,以产生所需的校准压力,该文利用一种基于遗传算法(GA)的反向传播(BP)神经网络建立了落锤液压动标装置的工作参数与所产生的压力峰值和压力脉宽之间的数学模型。测试结果表明,基于GA-BP神经网络算法求取的落锤装置准静态校准模型具有较高的拟合精度,其压力峰值误差不超过2%,压力脉宽误差小于1%,证明该研究结果具有工程应用价值。
Abstract:
The drop hammer dynamic pressure calibration device is commonly used for the quasi-static calibration of the piezoelectric pressure transducer for shock wave measurement.In order to quickly and accurately adjust the working parameters of the drop hammer device and generate the required calibration pressure,a mathematical model about the relationship of the working parameters of the drop hammer hydraulic dynamic pressure calibration device with the peak value and pulse width of pressure is established based on the gennetic algorithm-back propagation(GA-BP)neural network.The test results show that the model based on the GA-BP neural network has the better high fitting precision and practical engineering application value,and the peak pressure error is not higher than 2% and the pulse width error is less than 1%.

参考文献/References:

[1] 孔德仁,李永新,朱明武.冲击波测量用压力传感器准静态校准方法[J].仪器仪表学报,2002,23(z1):16-17.
Kong Deren,Li Yongxin,Zhu Mingwu.Quasi-static calibration measure of pressure sensor for shock wave[J].Chinese Journal of Scientific Instrument,2002,23(z1):16-17.
[2]狄长安,孟祥明,边鹏,等.高压压电传感器静态与准静态校准方法研究[J].弹道学报,2014,26(2):86-89.
Di Changan,Meng Xiangming,Bian Peng,et al.Analysis on static and quasi-static sensitivity characteristics of high-pressure piezoelectric sensors[J].Journal of Ballistics,2014,26(2):86-89.
[3]孔德仁,朱明武,李永新.基于落锤动标装置的传感器准静态绝对校准方法[J].南京理工大学报,2002,26(1):48-51.
Kong Deren,Zhu Mingwu,Li Yongxin.Means of quasi-static absolute calibration of pressure-measuring transducers based on the drop-hammer dynamic pressure calibration system[J].Journal of Nanjing University of Science and Technology,2002,26(1):48-51.
[4]孔德仁,李永新,朱明武.基于落锤液压动标装置的铜球准动态校准的经验模型[J].南京理工大学学报,2001,25(5):475-479.
Kong Deren,Li Yongxin,Zhu Mingwu.The experiential model of quasi-dynamic calibration on copper balls based on drop hammer dynamic calibration system[J].Journal of Nanjing University of Science and Technology,2001,25(5):475-479.
[5]孔德仁,朱明武,李永新,等.量纲分析在传感器绝对校准建模中的应用[J].弹道学报,2002,14(1):93-96.
Kong Deren,Zhu Mingwu,Li Yongxin,et al.Application of dimensional analysis in absolute calibration modeling of sensor[J].Journal of ballistics,2002,14(1):93-96.
[6]刘春艳,凌建春,寇林元,等.GA-BP神经网络与BP神经网络性能比较[J].中国卫生统计,2013,30(2):173-176.
Liu Chunyan,Ling Jianchun,Kou Linyuan,et a1.Performance comparison between GA-BP neural network and BP neural network[J].Chinese Journal of Health Statistics,2013,30(2):173-176.
[7]余凡,赵英时,李海涛.基于遗传BP神经网络的主被动遥感协同反演土壤水分[J].红外与毫米波学报,2012,31(3):283-288.
Yu Fan,Zhao Yingshi,Li Haitao.Soil moisture retrieval based on GA-BP neural networks algorithm[J].Journal of Infrared and Millimeter Waves,2012,31(3):283-288.
[8]彭基伟,吕文华,行鸿彦,等.基于改进GA-BP神经网络的湿度传感器的温度补偿[J].仪器仪表学报,2013,34(1):153-160.
Peng Jiwei,Lv Wenhua,Xing Hongyan,et al.Temperature compensation for humidity sensor based on improved GA-BP neural network[J].Chinese Joumal of Scientinc Instrument,2013,34(1):153-160.
[9]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报,2012,36(6):962-967.
Men Zhiguo,Peng Xiuyan,Wang Xingmei,et al.Volterra series kernels estimation algorithm based on GA optimized BP neural network identification[J].Journal of Nanjing University of Science and Technology,2012,36(6):962-967.

备注/Memo

备注/Memo:
收稿日期:2016-02-24 修回日期:2016-06-27

基金项目:国家自然科学基金(11372143)
作者简介:顾廷炜(1991-),男,博士生,主要研究方向:动态压力校准及测试技术,E-mail:realngwei@163.com; 通讯作者:孔德仁(1964-),男,博士,教授,主要研究方向:兵器动态参量测试技术,新型传感器研制,测试计量技术与仪器,E-mail:derenkongnj@sina.com。
引文格式:顾廷炜,孔德仁.基于GA-BP神经网络的落锤液压动标装置准静态校准模型[J].南京理工大学学报,2017,41(5):581-586.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-09-30