[1]刘 昊.基于GM(1,1)与反向传输神经网络的大学生体育成绩预测[J].南京理工大学学报(自然科学版),2017,41(06):760.[doi:10.14177/j.cnki.32-1397n.2017.41.06.015]
 Liu Hao.Sports performance prediction for college students based onGM(1,1)and back propagation neural network[J].Journal of Nanjing University of Science and Technology,2017,41(06):760.[doi:10.14177/j.cnki.32-1397n.2017.41.06.015]
点击复制

基于GM(1,1)与反向传输神经网络的大学生体育成绩预测()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年06期
页码:
760
栏目:
出版日期:
2017-12-31

文章信息/Info

Title:
Sports performance prediction for college students based onGM(1,1)and back propagation neural network
文章编号:
1005-9830(2017)06-0760-05
作者:
刘 昊
中南财经政法大学 体育部,湖北 武汉 430064
Author(s):
Liu Hao
Department of Physical Education,Zhongnan University of Economics and Law,Wuhan 430064,China
关键词:
灰色模型 反向传输神经网络 大学生 体育成绩预测 组合预测
Keywords:
gray model back propagation neural network college students sports performance prediction combined prediction
分类号:
TP183
DOI:
10.14177/j.cnki.32-1397n.2017.41.06.015
摘要:
为了提高预测精度,提出了基于灰色模型GM(1,1)与反向传输神经网络(BPNN)的大学生体育成绩预测方法。采用GM(1,1)对大学生体育成绩的变化趋势进行建模。采用BPNN对GM(1,1)的大学生体育成绩预测结果进行修正。将该文方法应用于中南财经政法大学的男生50 m跑成绩实例中。测试结果表明,该文方法的大学生体育成绩预测精度达到了97.59%。
Abstract:
A sports performance prediction method for college students is proposed based on grey model GM(1,1)and the back propagation neural network(BPNN)to improve the prediction accuracy.The changing trend of sports performance for college students is modeled by the GM(1,1).The predictive results of GM(1,1)are corrected by the BPNN.This method is applied to the 50 meters running performance of students at Zhongnan University of Economics and Law.The test results show that,the sports performance prediction accuracy for college students of the proposed method is 97.59%.

参考文献/References:

[1] 戴敏.基于数据挖掘的运动员体能测试数据分析[J].计算机工程与应用,2003,39(9):38-40.
Dai Min.Analysis of physical ability data based on data mining[J].Computer Engineering and Applications,2003,39(9):38-40.
[2]邓美兰.奥运会男子现代五项前三名成绩的灰色马尔可夫链预测模型的研究[J].数学的实践与认识,2011,41(2):133-137.
Deng Meilan.Research on the top three places in men’s modern pentathlon of Olympic using gray Markov chain prediction model[J].Mathematics in Practice and Theory,2011,41(2):133-137.
[3]赵丙军.运用多元回归方法建立我国男子跳远项目训练模型的研究[J].西安体育学院学报,2011,18(1):81-82.
Zhao Bingjun.Model system on main training targets of men’s jumping[J].Journal of Xi’an Institute of Physical Education,2011,18(1):81-82.
[4]魏春玲.我国十项全能运动成绩的因子分析及灰色模型回归预测研究[J].体育科学,2004,24(11):66-69.
Wei Chunling.Factor analysis and gray system regression prediction on performance of decathlon in China[J].China Sport Science,2004,24(11):66-69.
[5]周伟.对中外优秀女子三级跳远运动员三跳技术的灰色关联分析[J].吉林体育学院学报,2004,20(3):64-65.
Zhou Wei.Analysis on gray correlatives of the hop step and jump technique of Chinese and foreign elite female players[J].Journal of Jilin Institute of Physical Education,2004,20(3):64-65.
[6]许晶.我国优秀男子十项全能运动员竞技特征及实力分析[J].广州体育学院学报,2008,12(3):36-64.
Xu Jing.Study on the competitive feature and actual strength of Chinese outstanding male decathlon athletes[J].Journal of Guangzhou Sport University,2008,12(3):36-64.
[7]王宗平,孙光.应用BP神经网络算法对运动成绩预测的实证研究[J].南京体育学院学报,2006,20(4):109-111.
Wang Zongping,Sun Guang.Demonstration on the athletic achievements forecasting based on back propagation neural network[J].Journal of Nanjing Institute of Physical Education,2006,20(4):109-111.
[8]刘国璧,袁宏俊,孙群,等.基于模糊神经网络的刘翔110 m栏成绩预测[J].安徽电子信息职业技术学院学报,2011,13(1):16-18.
Liu Guobi,Yuan Hongjun,Sun Qun,et al.Research on Liu Xiang’s achievements in 110 on hurdle based on fuzzy neural network[J].Journal of Anhui Vocational College of Electronics and Information Technology,2011,13(1):16-18.
[9]刘昊.非线性筛选因子和加权的大学生体育成绩建模与预测[J].计算机应用与软件,2014,31(11):105-108.
Liu Hao.Modelling and predicting sports performances with nonlinear screening factors and weighting[J].Computer Applications and Software,2014,31(11):105-108.
[10]李征宇,闫生.神经网络模型在运动成绩预测中的应用[J].哈尔滨体育学院学报,2009,27(2):110-113.
Li Zhengyu,Yan Sheng.The nerve network model application in the forecast of sports result[J].Journal of Harbin Institute of Physical Education,2009,27(2):110-113.
[11]姜艳华,王彦文.自适应神经网络在UPQC补偿量检测中的应用[J].南京理工大学学报,2015,39(2):225-228,235.
Jiang Yanhua,Wang Yanwen.Application of adaptive neural network in compensation detection for UPQC[J].Journal of Nanjing University of Science and Technology,2015,39(2):225-228,235.
[12]崔东文.多隐层BP神经网络模型在径流预测中的应用[J].水文,2013,22(2):55-58.
Cui Dongwen.Application of hidden multilayer BP neural network model in runoff prediction[J].Journal of China Hydrology,2013,22(2):55-58.
[13]崔东文,金波.改进BP神经网络模型在小康水利综合评价中的应用[J].河海大学学报(自然科学版),2014,32(7):63-65.
Cui Dongwen,Jin Bo.Application of improved BP neural network model to comprehensive evaluation of water conservancy in a state of relative prosperity[J].Journal of Hohai University(Natural Sciences),2014,32(7):63-65.

相似文献/References:

[1]张祎,杨春霞,杨栋,等.基于灰色模型的电磁轨道发射实验电枢初速分析[J].南京理工大学学报(自然科学版),2012,36(03):482.
 ZHANG Yi,YANG Chun-xia,YANG Dong,et al.Analysis on Initial Velocity of Armature of Electromagnetic Rail Launching Experiment Based on Grey Model[J].Journal of Nanjing University of Science and Technology,2012,36(06):482.

备注/Memo

备注/Memo:
收稿日期:2017-03-13 修回日期:2017-09-27
基金项目:湖北省高等学校省级教学研究项目(2013160)
作者简介:刘昊(1972-),男,副教授,主要研究方向:体育教育训练理论与体育经济学,E-mail:liuhao126@126.com。
引文格式:刘昊.基于GM(1,1)与反向传输神经网络的大学生体育成绩预测[J].南京理工大学学报,2017,41(6):760-764.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-12-31