[1]朱 诚,郑 林.基于格子Boltzmann方法的热毛细对流数值模拟研究[J].南京理工大学学报(自然科学版),2017,41(06):773.[doi:10.14177/j.cnki.32-1397n.2017.41.06.018]
 Zhu Cheng,Zheng Lin.Numerical simulation of thermocapillary convectionbased on lattice Boltzmann method[J].Journal of Nanjing University of Science and Technology,2017,41(06):773.[doi:10.14177/j.cnki.32-1397n.2017.41.06.018]
点击复制

基于格子Boltzmann方法的热毛细对流数值模拟研究()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年06期
页码:
773
栏目:
出版日期:
2017-12-31

文章信息/Info

Title:
Numerical simulation of thermocapillary convectionbased on lattice Boltzmann method
文章编号:
1005-9830(2017)06-0773-06
作者:
朱 诚郑 林
南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
Zhu ChengZheng Lin
School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
格子玻尔兹曼方法 热毛细对流 数值模拟 矩形液池 双密度分布函数
Keywords:
lattice Boltzmann method thermocapillary convection numerical simulation rectangular cavity double density distribution function
分类号:
O35
DOI:
10.14177/j.cnki.32-1397n.2017.41.06.018
摘要:
为研究Prandtl(Pr)数和纵横比(Ar)对侧壁差异加热的矩形液池内热毛细对流的影响,利用基于双密度分布函数的格子玻尔兹曼(Boltzmann)方法进行二维数值模拟。引入速度偏离率和偏差温度,分别衡量速度的波动和热毛细对流对温度场的影响。结果表明:热毛细对流随着Pr(0.1100)的减小或Ar(0.22)的增大而增强; 当热毛细对流较强时速度的波动也增强了,同时能量在冷壁端部积聚; 当其它参数恒定而Pr在10100范围内变化时,温度场几乎不变; Ar≥1时,Ar对自由表面的速度和温度分布影响很小。
Abstract:
Thermocapillary convection in a differentially heated rectangular cavity is simulated using the double density distribution function based lattice Boltzmann method to study the effect of Prandtl number(Pr)and aspect ratio(Ar).The velocity deviation rate and the deviation temperature are calculated to quantify the influence of the fluctuation of velocity and thermocapillary convection on the temperature distribution.The results show that the thermocapillary convection is enhanced with decreasing Pr(0.1~100)or increasing Ar(0.2~2); the fluctuation of velocity is enhanced and accompanied by the energy accumulation near the cold wall end as flow enhances; the difference in the temperature field is tiny as Pr varies from 10 to 100; the velocity and temperature distributions along the free surface are not sensitive to Ar as Ar≥1.

参考文献/References:

[1] 张国强,金志明.多孔介质内自然对流传热传质研究[J].南京理工大学学报,1998,22(2):169-172.
Zhang Guoqiang,Jin Zhiming.Natural convection with heat and mass transfer in a porus medium[J].Journal of Nanjing University of Science and Technology,1998,22(2):169-172.
[2]Zebib A,Homsy G M,Meiburg E.High Marangoni number convection in a square cavity[J].Physics of Fluids,1985,28(12):3467-3476.
[3]Carpenter B M,Homsy G M.High Marangoni number convection in a square cavity:Part II[J].Physics of Fluids A,1990,2(2):137-149.
[4]石万元,李友荣,彭岚.Pr数对环形浅液池热毛细对流的影响[J].工程热物理学报,2011,32(2):250-254.
Shi Wanyuan,Li Yourong,Peng Lan.Effect of Prandtl number on thermocapillary convection in shallow annular pools[J].Journal of Engineering Thermophysics,2011,32(2):250-254.
[5]Kamotani Y,Ostrach S.Theoretical analysis of thermocapillary flow in cylindrical columns of high Prandtl number fluids[J].Journal of Heat Transfer,1998,120(3):758-764.
[6]Zeng Z,Mizuseki H,Shimamura K,et al.Usefulness of experiments with model fluid for thermocapillary convection—effect of Prandtl number on two-dimensional thermocapillary convection[J].Journal of Crystal Growth,2002,234(1):272-278.
[7]Hadid H B,Roux B.Thermocapillary convection in long horizontal layers of low-Prandtl-number melts subject to a horizontal temperature gradient[J].Journal of Fluid Mechanics,1990,221:77-103.
[8]朱丽红,刘秋生,胡文瑞.微重力条件下开口矩形容器的小Pr热毛细对流[J].半导体学报,2001,22(5):580-586.
Zhu Lihong,Liu Qiusheng,Hu Wenrui.Thermocapillary convection in low-Prandtl fluid in an open rectangular cavity under microgravity condition[J].Chinese Journal of Semiconductors,2001,22(5):580-586.
[9]Du Rui,Shi Baochang.The lattice Boltzmann method for the thermocapillary flow in a cavity under microgravity condition[J].Computers & Mathematics with Applications,2008,55(7):1433-1440.
[10]张迪,段俐,康琦.实践十号卫星项目——热毛细对流振荡特征的地面研究[J].力学与实践,2016,38(1):43-48.
Zhang Di,Duan Li,Kang Qi.SJ-10 satellite project—ground research of oscillations characteristics of thermoccapillary convection[J].Mechanics in Engineering,2016,38(1):43-48.
[11]王佳,吴笛,段俐,等.大尺寸液桥热毛细对流失稳性地面实验研究[J].力学学报,2015,47(2):580-586.
Wang Jia,Wu Di,Duan Li,et al.Ground experiments on the instability of thermocapillary convection in large scale liquid bridge[J].Chinese Journal of Theoretical and Applied Mechanics,2015,47(2):580-586.
[12]康琦,段俐,尹永利,等.热毛细对流表面波空间实验研究[J].力学与实践,2016,38(2):207-210.
Kang Qi,Duan Li,Yin Yongli,et al.The project introduction about experiment study on surface wave of thermocapillary convection in space[J].Mechanics in Engineering,2016,38(2):207-210.
[13]李强,余凯,宣益民.纳米流体流动与传热过程的LBM并行计算[J].南京理工大学学报,2005,29(6):631-634.
Li Qiang,Yu Kai,Xuan Yimin.LBM parallel computation for flow and heat transfer of nanofluids[J].Journal of Nanjing University of Science and Technology,2005,29(6):631-634.
[14]Qian Y H,D’Humières D,Lallemand P.Lattice BGK models for Navier-Stokes equation[J].Europhysics Letters,1992,17(6):479-484.
[15]Chen S,Doolen G D.Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364.
[16]Liu Haihu,Zhang Yonghao,Valocchi A J.Modeling and simulation of thermocapillary flows using lattice Boltzmann method[J].Journal of Computational Physics,2012,231(12):4433-4453.
[17]Shi Baochang,Guo Zhaoli.Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation[J].International Journal of Modern Physics B,2003,17(1):173-177.
[18]Guo Zhaoli,Zheng Chuguang,Shi Baochang.An extrapolation method for boundary conditions in lattice Boltzmann method[J].Physics of Fluids,2002,14(6):2007-2010.
[19]Guo Zhaoli,Zheng Chuguang,Shi Baochang.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J].Chinese Physics,2002,11(4):366-374.

备注/Memo

备注/Memo:
收稿日期:2016-07-12 修回日期:2016-10-19
基金项目:国家自然科学基金(51506097); 江苏省自然科学基金(BK20130750)
作者简介:朱诚(1991-),男,硕士生,主要研究方向:热毛细对流,E-mail:zhucheng199102@163.com; 通讯作者:郑林(1981-),男,博士,主要研究方向:多相流强化传热,E-mail:lz@njust.edu.cn。
引文格式:朱诚,郑林.基于格子Boltzmann方法的热毛细对流数值模拟研究[J].南京理工大学学报,2017,41(6):773-778.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-12-31