[1]陈洪转,李 婷,杨 秋,等.不确定性下的多矩阵博弈模型及求解算法[J].南京理工大学学报(自然科学版),2017,41(06):792.[doi:10.14177/j.cnki.32-1397n.2017.41.06.021]
 Chen Hongzhuan,Li Ting,Yang Qiu,et al.Multi-matrix game model and its solution algorithm under uncertainty[J].Journal of Nanjing University of Science and Technology,2017,41(06):792.[doi:10.14177/j.cnki.32-1397n.2017.41.06.021]
点击复制

不确定性下的多矩阵博弈模型及求解算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
41卷
期数:
2017年06期
页码:
792
栏目:
出版日期:
2017-12-31

文章信息/Info

Title:
Multi-matrix game model and its solution algorithm under uncertainty
文章编号:
1005-9830(2017)06-0792-05
作者:
陈洪转李 婷杨 秋王 玥
南京航空航天大学 经济与管理学院,江苏 南京 211106
Author(s):
Chen HongzhuanLi TingYang QiuWang Yue
College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
不确定性 多矩阵博弈 最优矩阵 支付值 混合整数规划模型 线性规划模型
Keywords:
uncertainty multi-matrix game optimal matrix payoffs mixed integer programming model linear programming model
分类号:
F224.32
DOI:
10.14177/j.cnki.32-1397n.2017.41.06.021
摘要:
为解决多矩阵博弈中每个支付值存在多种选择的问题,提出1种多矩阵博弈模型。定义了最优矩阵的概念。以多个矩阵的形式表述支付矩阵的支付值不确定问题。通过引入二进制变量,将混合整数规划的多矩阵博弈模型转化为标准的线性规划模型进行求解。根据二进制变量的取值搜索出了最优矩阵。
Abstract:
A multi-matrix game model is proposed for the problem of various options for each payoff.The optimal matrix is defined.The uncertainty of payoffs is expressed by multi-matrix.The multi-matrix game model based on mixed integer programming is transformed to a linear programming model by using binary variables.An optimal matrix is obtained based on the binary variables.

参考文献/References:

[1] 刘光杰,戴跃伟,赵玉鑫,等.隐写对抗的博弈论建模[J].南京理工大学学报,2008,32(2):199-204.
Liu Guangjie,Dai Yuewei,Zhao Yuxin,et al.Modeling steganographic counterwork by game theory[J]Journal of Nanjing University of Science and Technology,2008,32(2):199-204.
[2]吴诗辉,杨建军,郭乃林.三角模糊矩阵博弈的最优策略研究[J].系统工程与电子技术,2009,31(5):1231-1234.
Wu Shihui,Yang Jianjun,Guo Nailin.Study on the optimal strategies solution of triangular fuzzy matrix game[J].Systems Engineering and Electronics,2009,31(5):1231-1234.
[3]Capisani L,Ferrara A,Maqnani L.Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators[J].International Journal of Control,2009,82(2):365-377.
[4]杨哲,蒲勇健,郭心毅.不确定性下多目标博弈中弱Pareto-NS均衡的存在性[J].系统工程理论与实践,2013,33(3):660-665.
Yang Zhe,Pu Yongjian,Guo Xinyi.On the existence of weakly Pareto-NS equilibrium multi-objective games under uncertainty[J].Systems Engineering Theory and Practice,2013,33(3):660-665.
[5]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1993:98-138.
[6]方志耕,王传会,张娜,等.基于灰信息变元的泛函博弈模型研究[J].中国管理科学,2014,22(2):112-118.
Fang Zhigeng,Wang Chuanhui,Zhang Na,et al.Analysis of functional game model based on grey information variable[J].Chinese Journal of Management Science,2014,22(2):112-118.
[7]倪健,韩直,彭金栓.基于零和灰色博弈模型的高速公路入口车辆冲突研究[J].公路交通技术,2008(4):121-124.
Ni Jian,Han Zhi,Peng Jinshuan.Research on vehicle conflict at entrance of expressway based on zero and grey game model[J].Technology of Highway and Transport,2008(4):121-124.
[8]Hsiao C R,Raghavan T E S.Monotonicity and dummy free property for multi-choice cooperative games[J].International Journal of Game Theory,1992,21(3):301-312.
[9]Hsiao C R.The Shapley value for multi-choice cooperative games[J].Games & Economic Behavior,1991,5(2):240-256.
[10]Hwang Y A,Liao Y H.The unit-level-core for multi-choice games:The replicated core for TU games[J].Journal of Global Optimization,2010,47(2):161-171.
[11]Hwang Y A,Liao Y H.The multi-core,balancedness and axiomatizations for multi-choice games[J].International Journal of Game Theory,2011,40(4):677-689.
[12]Branzei R,Llorca N,Sánchez-Soriano J,et al.A constrained egalitarian solution for convex multi-choice games[J].TOP,2014,22(3):860-874.
[13]Biswal M P,Acharya S.Solving multi-choice linear programming problems by interpolating polynomials[J].Mathematical & Computer Modelling,2011,54(5-6):1405-1412.
[14]Panda A,Das C B.Multi-choice linear programming for matrix game[J].Applied Mathematics & Computation,2014,237(3):411-418.
[15]雷磊,王玺.解决模糊多目标线性规划问题的折衷模型研究[J].统计与决策,2015(18):15-18.
Lei Lei,Wang Xi.Compromise model for fuzzy multiobjective linear programming problems[J].Statistics and Decision,2015(18):15-18.
[16]Chang C T.Multi-choice goal programming[J].Omega,2007,35(4):389-396.
[17]Chang C T.Revised multi-choice goal programming[J].Applied Mathematical Modelling,2008,32(12):2587-2595.

相似文献/References:

[1]钱爱玲,丁晓峰,卢炎生,等.不确定时间序列数据库中概率K最近邻查找[J].南京理工大学学报(自然科学版),2013,37(01):38.
 Qian Ailing,Ding Xiaofeng,Lu Yansheng,et al.Probabilistic Knearest neighbor search in uncertain timeseries database[J].Journal of Nanjing University of Science and Technology,2013,37(06):38.
[2]孙翔,王子栋,郭治.不确定线性系统的鲁棒稳定化设计[J].南京理工大学学报(自然科学版),1995,(01):22.
 Sun Xiang.Robust Stabilizing Controller Design for Uncertain Linear Systems.[J].Journal of Nanjing University of Science and Technology,1995,(06):22.

备注/Memo

备注/Memo:
收稿日期:2016-09-19 修回日期:2017-03-07
基金项目:国家自然科学基金(71372080; 71573115); 中央高校基本科研业务费专项资金(NJ20160083)
作者简介:陈洪转(1977-),女,博士,教授,主要研究方向:博弈论、供应链管理,E-mail:chz-hhu@163.com。
引文格式:陈洪转,李婷,杨秋,等.不确定性下的多矩阵博弈模型及求解算法[J].南京理工大学学报,2017,41(6):792-796.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2017-12-31