[1]李 颖,朱保平.基于交互链路的相似用户推荐算法[J].南京理工大学学报(自然科学版),2018,42(02):183.[doi:10.14177/j.cnki.32-1397n.2018.42.02.008]
 Li Ying,Zhu Baoping.Similar user recommendation algorithm based on interactive link[J].Journal of Nanjing University of Science and Technology,2018,42(02):183.[doi:10.14177/j.cnki.32-1397n.2018.42.02.008]
点击复制

基于交互链路的相似用户推荐算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年02期
页码:
183
栏目:
出版日期:
2018-04-30

文章信息/Info

Title:
Similar user recommendation algorithm based on interactive link
文章编号:
1005-9830(2018)02-0183-06
作者:
李 颖朱保平
南京理工大学 计算机科学与工程学院,江苏 南京 210094
Author(s):
Li YingZhu Baoping
School of Computer Science and Engineering,Nanjing University of Scienceand Technology,Nanjing 210094,China
关键词:
用户推荐 交互链路 基本信息相似度 交互强度 间接交互
Keywords:
user recommendation interactive link similarity of basic information interactive strength indirect interaction
分类号:
TP391.1
DOI:
10.14177/j.cnki.32-1397n.2018.42.02.008
摘要:
用户推荐是社交软件中必不可少的功能之一。针对目前绝大多数的用户推荐算法仅从用户的关注和粉丝中寻找相似用户,忽略了与其有过交互但却未关注该用户的人,以及仅关注用户间的直接交互、未考虑间接交互对推荐效果的影响等问题,该文提出了一种有效的基于交互链路的相似用户推荐算法。该算法将用户基本信息相似度与交互强度相结合,实现了相似用户的推荐。与已有算法相比,该算法扩展了发现相似用户的范围,并在交互链路的大背景下将间接交互引入交互强度计算中。实验结果表明,该文算法能够发现更多的相似用户。
Abstract:
User recommendation is one of the essential functions of the social software. In view of that most of the user recommendation algorithms find the similar users only from a certain user’s followers and attention,ignoring persons who have interaction with the user but do not follow this user,and they just pay attention to the direct interaction among users and do not take the influence of indirect interaction on performance of recommendation into consideration,an effective user recommendation algorithm based on the interactive link is proposed here. By combining similarity of the basic information and the interactive strength between users,the algorithm can recommend similar users. Compared with other methods,the algorithm can expand the range of finding similar users and bring indirect interaction into the calculation of interactive strength under the background of interactive link. Experimental results show that the scheme can discover more similar users.

参考文献/References:

[1] 仲兆满,胡云,李存华,等. 微博中特定用户的相似用户发现方法[J]. 计算机学报,2016,39(4):765-779.
Zhong Zhaoman,Hu Yun,Li Cunhua,et al. Discovering similar users for specific user on microblog[J]. Chinese Journal of Computers,2016,39(4):765-779.
[2]Wu Buxiao,Xiao Jing,Chen Jieming. Friend recommendation by user similarity graph based on interest in social tagging systems[C]//Advanced IntelligentComputing Theories and Applications. Fuzhou,China:Springer International Publishing,2015:375-386.
[3]Xiang Rongjing,Neville J,Rogati M. Modeling relationship strength in online social networks[C]//Proceedings of the 19th International Conference on World Wide Web. North Carolina,US:ACM,2010:981-990.
[4]徐志明,李栋,刘挺,等. 微博用户的相似性度量及其应用[J]. 计算机学报,2014,37(1):207-218.
Xu Zhiming,Li Dong,Liu Ting,et al. Measuring similarity between microblog users and its application[J]. Chinese Journal of Computers,2014,37(1):207-218.
[5]王晖媛. 基于节点影响力的链路推荐研究[D]. 南京:东南大学计算机学院,2015.
[6]王文,王树锋,李洪华. 基于文本语义和表情倾向的微博情感分析方法[J]. 南京理工大学学报,2014,38(6):733-738.
Wang Wen,Wang Shufeng,Li Honghua. Micro-blogging sentiment analysis method based on text semantics and expression tendentiousness[J]. Journal of Nanjing University of Science and Technology,2014,38(6):733-738.
[7]Li Ting,Liu Ning,Yan Jun,et al. A Markov chain model for integrating behavioral targeting into contextual advertising[C]//ACM SIGKDD Workshop on Data Mining and Audience Intelligence for Advertising. Paris,France:DBLP,2009:1-9.
[8]Kwak H,Lee C,Park H,et al. What is twitter,a social network or a news media?[C]//International Conference on World Wide Web. Florence,Italy:ACM,2010:591-600.
[9]Otten R H J M,Ginneken L P P P V. The annealing algorithm[M]. New York,US:Springer,1989.
[10]吴树芳,徐建民,武晓波. 融合用户标签和关系的微博用户相似性度量[J]. 情报杂志,2014(12):170-173.
Wu Shufang,Xu Jianmin,Wu Xiaobo. Similarity measurement of micro-blogging users merging user tags and relationships[J]. Journal of Intelligence,2014(12):170-173.

备注/Memo

备注/Memo:
收稿日期:2017-02-22 修回日期:2017-07-30
作者简介:李颖(1993-),女,硕士生,主要研究方向:数据挖掘,E-mail:lyingHeaven@njust.edu.cn; 通讯作者:朱保平(1964-),男,博士,副教授,主要研究方向:信息安全与理论,E-mail:zbp2068@126.com。
引文格式:李颖,朱保平. 基于交互链路的相似用户推荐算法[J]. 南京理工大学学报,2018,42(2):183-188.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-04-30