[1]郑 皓,熊伟丽.基于多阶段ICA-SVDD的间歇过程故障监测[J].南京理工大学学报(自然科学版),2018,42(02):195.[doi:10.14177/j.cnki.32-1397n.2018.42.02.010]
 Zheng Hao,Xiong Weili.Fault monitoring for batch process based on multi-stage ICA-SVDD[J].Journal of Nanjing University of Science and Technology,2018,42(02):195.[doi:10.14177/j.cnki.32-1397n.2018.42.02.010]
点击复制

基于多阶段ICA-SVDD的间歇过程故障监测()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年02期
页码:
195
栏目:
出版日期:
2018-04-30

文章信息/Info

Title:
Fault monitoring for batch process based on multi-stage ICA-SVDD
文章编号:
1005-9830(2018)02-0195-09
作者:
郑 皓1熊伟丽12
江南大学 1.物联网工程学院; 2.轻工过程先进控制教育部重点实验室,江苏 无锡 214122
Author(s):
Zheng Hao1Xiong Weili12
1.School of Internet of Things Engineering; 2.Key Laboratory of Advanced Process Control forLight Industry of Ministry of Education,Jiangnan University,Wuxi 214122,China
关键词:
间歇过程 阶段划分 独立成分分析 支持向量数据描述 故障监测
Keywords:
batch processes stage division independent component analysis support vector data description fault monitoring
分类号:
TP301
DOI:
10.14177/j.cnki.32-1397n.2018.42.02.010
摘要:
针对间歇生产过程数据存在的多阶段和非高斯性等特征,提出一种改进的阶段划分和故障监测方法。首先根据各个时间片的相似度和K均值算法进行阶段划分,然后利用独立成分分析(ICA)方法分别提取出各阶段的非高斯特征信息。最后,引入支持向量数据描述(SVDD)算法对独立成分和剩余的高斯残差空间分别建立统计分析模型,实现间歇过程故障的在线监测。通过半导体蚀刻过程故障监测应用实例,验证了该文方法的可行性和有效性。
Abstract:
In view of the characteristics of multi-stages and the non-Gaussian of the batch process,an improved stage division and fault monitoring method is proposed. Firstly,the stage is divided according to the similarity of each time slice and the k-means algorithm,and then the independent component analysis(ICA)method is used to extract the feature information of non-Gaussian of each stage respectively. Finally,the support vector data description(SVDD)algorithm is introduced to establish a statistical analysis model for the independent components and the remaining Gaussian residual spaces,and the whole process is monitored. The feasibility and effectiveness of the proposed method is verified by an actual fault monitoring application for the semiconductor etch process.

参考文献/References:

[1] Ge Z,Song Z,Gao F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research,2013,52(10):3543-3562.
[2]周东华,史建涛,何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报,2014,40(2):161-171.
Zhou Donghua,Shi Jiantao,He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica,2014,40(2):161-171.
[3]杨青,孙佰聪,朱美臣,等. 基于小波包熵和聚类分析的滚动轴承故障诊断方法[J]. 南京理工大学学报,2013,37(4):517-523.
Yang Qing,Sun Baicong,Zhu Meichen,et al. Rolling bearing fault diagnosis method based on wavelet packet entropy and clustering analysis[J]. Journal of Nanjing University of Science and Technology,2013,37(4):517-523.
[4]Yao Y,Gao F. A survey on multistage/multiphase statistical modeling methods for batch processes[J]. Annual Reviews in Control,2009,33(2):172-183.
[5]Lee J M,Qin S J,Lee I B. Fault detection and diagnosis based on modified independent component analysis[J]. Aiche Journal,2006,52(10):3501-3514.
[6]郑宇杰,杨静宇,吴小俊,等. 基于对称ICA的特征抽取方法及其在人脸识别中的应用[J]. 南京理工大学学报,2006,19(1):116-212.
Zheng Yujie,Yang Jingyu,Wu Xiaojun,et al. Feature extraction based on symmetrical ICA and its application to face recognition[J]. Journal of Nanjing University of Science and Technology,2006,19(1):116-212.
[7]曾生根. 快速独立分量分析方法及其在图像分析中的若干应用研究[D]. 南京:南京理工大学自动化学院,2004:26-40.
[8]高学金,崔宁,张亚潮,等. 基于粒子群优化MICA的间歇过程故障监测[J]. 仪器仪表学报,2015,36(1):152-159.
Gao Xuejin,Cui Ning,Zhang Yachao,et al. Fault detection of batch processes based on MICA optimized with PSO[J]. Chinese Journal of Scientific Instrument,2015,36(1):152-159.
[9]Jia M,Chu F,Wang F,et al. On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems,2010,101(2):110-122.
[10]Chen J,Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science,2002,57(1):63-75.
[11]Yu J,Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. Aiche Journal,2008,54(7):1811-1829.
[12]张淑美,王福利,谭帅,等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报,2016,42(1):60-80.
Zhang Shumei,Wang Fuli,Tan Shuai,et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica,2016,42(1):60-80.
[13]胡永兵,高学金,李亚芬,等. 基于仿射传播聚类子集主元分析的间歇过程监测方法[J]. 化工学报,2016,67(5):1989-1997.
Hu Yongbing,Gao Xuejin,Li Yafen,et al. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering[J]. CIESC Journal,2016,67(5):1989-1997.
[14]Tax D M J,Duin R P W. Support vector domain description[J]. Pattern Recognition Letters,1999,20(11-13):1191-1199.
[15]Tax D M J,Duin R P W. Support vector data description[J]. Machine Learning,2004,54(1):45-66.
[16]Lee S W,Park J,Lee S W. Low resolution face recognition based on support vector data description[J]. Pattern Recognition,2006,39(9):1809-1812.
[17]Yao M,Wang H,Xu W. Batch process monitoring based on functional data analysis and support vector data description[J]. Journal of Process Control,2014,24(7):1085-1097.
[18]杨雅伟,宋冰,侍洪波. 多SVDD模型的多模态过程监控方法[J]. 化工学报,2015,66(11):4526-4533.
Yang Yawei,Song Bing,Shi Hongbo. Multimode processes monitoring method via multiple SVDD model[J]. CIESC Journal,2015,66(11):4526-4533.
[19]Ge Z Q,Song Z H. Bagging support vector data description model for batch process monitoring[J]. Journal of Process Control,2013,23(8):1090-1096.
[20]谢彦红,孙呈敖,李元. 基于滑动窗口SVDD的间歇过程故障监测[J]. 信息与控制,2015,44(5):531-537.
Xie Yanhong,Sun Chengao,Li Yuan. Fault monitoring of batch process based on moving window SVDD[J]. Information and Control,2015,44(5):531-537.
[21]Wise B M,Gallagher N B,Butler S W,et al. A comparison of principal component analysis,multiway principal component analysis,trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemometrics,1999,13(3-4):379-396.
[22]陶栋琦,薄翠梅,易辉. 基于多时段MPCA的半导体蚀刻过程监测方法[J]. 传感技术学报,2015(6):798-802.
Tao Dongqi,Bo Cuimei,Yi Hui. Semiconductor etch process monitoring based on multi-stage MPCA[J]. Chinese Journal of Sensors and Actuators,2015(6):798-802.
[23]Ge Z,Gao F,Song Z. Batch process monitoring based on support vector data description method[J]. Journal of Process Control,2011,21(6):949-959.
[24]Li G,Hu Y,Chen H,et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy & Buildings,2016,116:104-113.

备注/Memo

备注/Memo:
收稿日期:2017-06-25 修回日期:2017-12-27
基金项目:国家自然科学基金(61773182)
作者简介:郑皓(1991-)男,硕士生,主要研究方向:工业过程故障诊断,E-mail:zhenghao_e_mail@163.com; 通讯作者:熊伟丽(1978-),女,博士,教授,主要研究方向:复杂工业过程建模及优化、智能优化算法及应用,E-mail:greenpre@163.com。
引文格式:郑皓,熊伟丽. 基于多阶段ICA-SVDD的间歇过程故障监测[J]. 南京理工大学学报,2018,42(2):195-203.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-04-30