[1]王 呈,吉训生,吴 卫.基于改进粒子滤波算法的无线传感器网络节点定位[J].南京理工大学学报(自然科学版),2018,42(03):309.[doi:10.14177/j.cnki.32-1397n.2018.42.03.008]
 Wang Cheng,Ji Xunsheng,Wu Wei.Node localization in wireless sensor networks based on improved particle filter algorithm[J].Journal of Nanjing University of Science and Technology,2018,42(03):309.[doi:10.14177/j.cnki.32-1397n.2018.42.03.008]
点击复制

基于改进粒子滤波算法的无线传感器网络节点定位
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年03期
页码:
309
栏目:
出版日期:
2018-06-30

文章信息/Info

Title:
Node localization in wireless sensor networks based on improved particle filter algorithm
文章编号:
1005-9830(2018)03-0309-08
作者:
王 呈吉训生吴 卫
江南大学 物联网工程学院,江苏 无锡 214122
Author(s):
Wang ChengJi XunshengWu Wei
School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
关键词:
移动定位 粒子滤波 无线传感器网络 非视距 马尔科夫过程 p-范数
Keywords:
mobile localization particle filter wireless sensor networks non-line-of-sight Markov process p-norm expression
分类号:
TP393
DOI:
10.14177/j.cnki.32-1397n.2018.42.03.008
摘要:
针对无线传感器网络节点定位过程中的非视距传播误差问题,提出1种改进的状态检测粒子滤波算法。引入节点随机运动模型对节点运动状态进行预测。通过马尔科夫过程对在非视距(NLOS)/视距(LOS)混合环境下获得的测量值进行检测。利用p-范数对NLOS测量值进行筛选。结合校正后的节点间测量值和节点真实移动速度构建锚盒和采样盒。仿真结果表明,当NLOS/LOS混合模型分别满足均匀分布、高斯分布和指数分布时,该文算法均有较高的定位性能。
Abstract:
An improved state detection particle filter algorithm is proposed to solve the problem of non-line-of-sight error in the node localization of wireless sensor networks(WSNs). Nodes' motion state is predicted by a random walk mobility model of the nodes. The measurements between nodes in the non-line-of-sight/line-of-sight(NLOS/LOS)mixed situation are identified by Markov process. The measurements including the NLOS error are selected according to the p-norm expression. An anchor box and a sampling box are built according to adjusted measurements between nodes and nodes'true mobile speeds. Simulation results indicate that,the proposed algorithm has high position accuracy when the NLOS/LOS hybrid model satisfies the uniform distribution,the Gaussian distribution and the exponential distribution respectively.

参考文献/References:

[1] 徐彤阳. NLOS 环境下无线传感器网络TOA 定位算法[J]. 计算机工程,2013,39(12):93-96.
Xu Tongyang. TOA localization algorithm in wireless sensor network under NLOS environment[J]. Computer Engineering,2013,39(12):93-96.
[2]Li X. An iterative NLOS mitigation algorithm for location estimation in sensor networks[J]. Mobile and Wireless Communications,2006,10(2):1-5.
[3]Chen Pichun. A non-line-of-sight error mitigation algorithm in location estimation[C]//Proc of the 1999 Wireless Communications and Networking Conference. New Orleans,LA,USA:IEEE,1999:316-320.
[4]李娅菲,朱烜璋. 非视距条件下的测距信息融合定位方法研究[J]. 电子测量与仪器学报,2015,23(5):775-780.
Li Yafei,Zhu Xuanzhang. Research on positioning method by ranging information fusion under NLOS condition[J]. Journal of Electronic Measurement and Instrument,2015,23(5):775-780.
[5]Yu K,Dutkiewicz E. NLOS identification and mitigation for mobile tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(3):1438-1452.
[6]沈田,温斌. 基于RSSI-距离区间映射的加权质心定位算法[J]. 电子测量技术,2015,9(5):42-44,61.
Shen Tian,Wen Bin. Weighted centroid localization algorithm based on RSSI-distance interval mapping[J]. Electronic Measurement Technology,2015,9(5):42-44,61.
[7]Baggio A,Koen L. Monte Carlo localization for mobile wireless sensor networks[J]. Ad Hoc Networks,2008,6(5):718-733.
[8]胡旦,刘志仓. 基于粒子滤波的蜂窝网目标跟踪[J]. 电子世界,2013,6(8):83-84.
Hu Dan,Liu Zhichang. Target tracking in cellular network based on particle filter[J]. Electronics World,2013,6(8):83-84.
[9]阔永红,周文文,陈健. 避免非视距影响的蒙特卡罗移动节点定位方法[J]. 西安电子科技大学学报,2014,12(1):6-12.
Kuo Yonghong,Zhou Wenwen,Chen Jian. Monte Carlo mobile localization for NLOS environment[J]. Journal of Xidian University,2014,12(1):6-12.
[10]Wang Jie,Gao Qinghua,Yu Yan,et al. Toward robust indoor localization based on Bayesian filter using chirp-spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics,2012,59(3):1622-1629.
[11]张美杨,季仲梅,王建辉. 基于Kalman滤波器的非视距误差抑制算法[J]. 计算机工程,2010,36(11):291-293.
Zhang Meiyang,Ji Zhongmei,Wang Jianhui. Non-line-of-sight error mitigation algorithm based on Kalman filter[J]. Computer Engineering,2010,36(11):291-293.
[12]黄艳,梁韦华,于海斌. 基于粒子滤波的无线传感器网络目标跟踪算法[J]. 控制与决策,2008,23(12):1389-1394.
Huang Yan,Liang Weihua,Yu Haibin. Tracking algorithm based on particle filter for wireless sensor networks[J]. Control and Decision,2008,23(12):1389-1394.
[13]罗咏劼,方群,杨万韩. LOS/NLOS 混合环境中的粒子滤波跟踪算法[J]. 电子与信息学报,2007,29(8):1833-1836.
Luo Yongjie,Fang Qun,Yang Wanhan. Particle filter tracking algorithm in LOS/NLOS hybrid environment[J]. Journal of Electronics and Information Technology,2007,29(8):1833-1836.

相似文献/References:

[1]孙罡,王昌明,张爱军.GPS静态单点定位的滤波算法比较[J].南京理工大学学报(自然科学版),2011,(01):80.
 SUN Gang,WANG Chang-ming,ZHANG Ai-jun.Comparison of Filtering Algorithms for GPS Static Point Positioning[J].Journal of Nanjing University of Science and Technology,2011,(03):80.
[2]胡昭华,宋耀良.一种用于运动跟踪的加窗粒子滤波新算法研究[J].南京理工大学学报(自然科学版),2007,(03):337.
 HU Zhao-hua,SONG Yao-liang.Motion Tracking Based on Novel Windowing Particle Filter[J].Journal of Nanjing University of Science and Technology,2007,(03):337.
[3]徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报(自然科学版),2007,(04):514.
 XU Mao-ge,SONG Yao-liang,LIU Li-wei.Chaotic Signal Detection and Track Based on Modified Extended Kalman Filter and Particle Filtering[J].Journal of Nanjing University of Science and Technology,2007,(03):514.
[4]徐天阳,吴小俊.基于多特征级联的目标跟踪算法研究[J].南京理工大学学报(自然科学版),2015,39(03):286.
 Xu Tianyang,Wu Xiaojun.Object tracking algorithm based on multiple features cascade[J].Journal of Nanjing University of Science and Technology,2015,39(03):286.
[5]刘 华,缪 晨,吴 文.平方根嵌入式容积卡尔曼粒子滤波算法[J].南京理工大学学报(自然科学版),2015,39(04):471.
 Liu Hua,Miao Chen,Wu Wen.Square-root imbedded cubature particle filter[J].Journal of Nanjing University of Science and Technology,2015,39(03):471.

备注/Memo

备注/Memo:
收稿日期:2016-12-02 修回日期:2017-10-08
基金项目:江苏省产学研前瞻性联合研究项目(BY2016022-28)
作者简介:王呈(1983-),男,博士,主要研究方向:系统辨识、模式识别及应用,E-mail:wangc@jiangnan.edu.cn; 通讯作者:吉训生(1969-),男,博士,教授,主要研究方向:信号处理,E-mail:jixunsheng@163.com。
引文格式:王呈,吉训生,吴卫. 基于改进粒子滤波算法的无线传感器网络节点定位[J]. 南京理工大学学报,2018,42(3):309-316.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-06-30