[1]刘 皓,胡明昕,朱一亨,等.基于遗传算法和支持向量回归的锂电池健康状态预测[J].南京理工大学学报(自然科学版),2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
 Liu Hao,Hu Mingxin,Zhu Yiheng,et al.Prediction for state of health of lithium-ion batteries by geneticalgorithm and support vector regression[J].Journal of Nanjing University of Science and Technology,2018,42(03):329.[doi:10.14177/j.cnki.32-1397n.2018.42.03.011]
点击复制

基于遗传算法和支持向量回归的锂电池 健康状态预测()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年03期
页码:
329
栏目:
出版日期:
2018-06-30

文章信息/Info

Title:
Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression
文章编号:
1005-9830(2018)03-0329-06
作者:
刘 皓1胡明昕2朱一亨2於东军2
1.南瑞集团(国网电力科学院)有限公司,江苏 南京 210003; 2.南京理工大学 计算机科学与工程学院,江苏 南京 210094
Author(s):
Liu Hao1Hu Mingxin2Zhu Yiheng2Yu Dongjun2
1.NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 210003,China; 2.School of Computer Science and Engineering,Nanjing University of Science and Technology, Nanjing 210094,China
关键词:
遗传算法 支持向量回归 锂电池 健康状态 超参数优化
Keywords:
genetic algorithm support vector regression lithium-ion batteries state of health hyper-parameter optimization
分类号:
TM912.1
DOI:
10.14177/j.cnki.32-1397n.2018.42.03.011
摘要:
为了提高锂电池健康状态(SOH)的预测精度,该文提出了1种基于遗传算法和支持向量回归(GA-SVR)的联合算法。通过GA解决SVR模型中的超参数优化问题。GA-SVR随机生成1组染色体,每个染色体包含了相应的SVR超参数信息。利用适应度函数计算出每条染色体的适应度值。根据适应度值对染色体进行选择、基因重组和变异等遗传操作,从而更新染色体的超参数信息。经过多次迭代后,找到适应度最大的染色体。从该染色体中提取相应的超参数信息,并训练最终的SVR预测模型。在美国国家航空航天局(NASA)锂电池数据集上的实验结果表明,该文算法优于基于混合像元核函数的高斯过程回归(SMK-GPR)算法、基于多尺度周期协方差函数的高斯过程回归(P-MGPR)算法、基于多尺度平方指数函数的高斯过程回归(SE-MGPR)算法和改进的基于粒子群优化的支持向量回归(IPSO-SVR)算法。
Abstract:
A joint algorithm based on genetic algorithm(GA)and support vector regression(GA-SVR)is proposed to improve the prediction accuracy of state of health(SOH)for lithium-ion batteries. GA is used to optimize the hyper-parameters in SVR model. Several chromosomes are initialized randomly by GA-SVR,each includes the hyper-parameters of SVR. The fitness of each chromosome is calculated by a fitness function. The hyper-parameters information of chromosomes is updated by selection,crossover and mutation according to the fitness. A chromosome with the highest fitness is chosen after multiple iterations. The SVR is trained as a prediction model based on the hyper-parameters of the selected chromosome. The experimental results on batteries datasets of National Aeronautics and Space Administration(NASA)of the USA show that the proposed GA-SVR outperforms the four popular SOH predictors,including spectral mixture kernel-Gaussian process regression(SMK-GPR),periodic covariance function-multiscale Gaussian process regression(P-MGPR),squared exponential function-multiscale Gaussian process regression(SE-MGPR),improved particle swarm optimization-support vector regression(IPSO-SVR).

参考文献/References:

[1] Zhang Jingliang,Lee J. A review on prognostics and health monitoring of li-ion battery[J]. Journal of Power Sources,2011,196(15):6007-6014. [2]Kim J G,Son B,Mukherjee S,et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources,2015,282(1):299-322. [3]Liu Datong,Pang Jingyue,Zhou Jianbao,et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability,2013,53(6):832-839. [4]Biagetti T,Sciubba E. Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[J]. Energy,2004,29(12-15):2553-2572. [5]Zheng Xiujuan,Fang Huajing. An integrated unscented Kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction[J]. Reliability Engineering & System Safety,2015,144(6):74-82. [6]Yu Jianbo. State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model[J]. IEEE Transactions on Instrumentation & Measurement,2015,64(11):2937-2949. [7]Mo Baohua,Yu Jingsong,Tang Diyin,et al. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter[C]//Proceedings of the IEEE International Conference on Prognostics and Health Management. Ottawa,Canada:IEEE,2016:1-5. [8]赖少发,刘华军. 机动目标跟踪支持向量回归学习新方法[J]. 南京理工大学学报,2017,41(2):264-268. Lai Shaofa,Liu Huajun. Novel approach in maneuvering target tracking based on support vector regression[J]. Journal of Nanjing University of Science and Technology,2017,41(2):264-268. [9]Wang Shuai,Zhao Lingling,Su Xiaohong,et al. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies,2014,7(10):6492-6508. [10]Dong Hancheng,Jin Xiaoning,Lou Yangbing,et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources,2014,271(11):114-123. [11]Qin Taichun,Zeng Shengkui,Guo Jianbin. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability,2015,55(9-10):1280-1284. [12]Ng S S Y,Xing Yinjiao,Tsui K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy,2014,118(4):114-123. [13]王健峰,张磊,陈国兴,等. 基于改进的网格搜索法的SVM参数优化[J]. 应用科技,2012,39(3):28-31. Wang Jianfeng,Zhang Lei,Chen Guoxing,et al. A parameter optimization method for an SVM based on improved grid search algorithm[J]. Applied Science and Technology,2012,39(3):28-31. [14]张讲社,郭高. 加权稳健支撑向量回归方法[J]. 计算机学报,2005,28(7):1171-1177. Zhang Jiangshe,Guo Gao. Reweighted robust support vector regression method[J]. Chinese Journal of Computers,2005,28(7):1171-1177. [15]田盛丰. 基于核函数的学习算法[J]. 北方交通大学学报,2003,27(2):1-8. Tian Shengfeng. Kernal-based learning algorithms[J]. Journal of Northern Jiaotong University,2003,27(2):1-8. [16]边霞,米良. 遗传算法理论及其应用研究进展[J]. 计算机应用研究,2010,27(7):2425-2429. Bian Xia,Mi Liang. Development on genetic algorithm theory and its applications[J]. Computer Application Research,2010,27(7):2425-2429. [17]Saha B,Goebel K. Battery data set[R]. California,USA:NASA Ames Prognostics Data Repository,2007. [18]He Yijun,Shen Jiani,Shen Jifu,et al. State of health estimation of lithium-ion batteries:A multiscale Gaussian process regression modeling approach[J]. Aiche Journal,2015,61(5):1589-1600.

相似文献/References:

[1]李克婧,张小兵.改进型遗传算法在弹丸结构优化设计中的应用[J].南京理工大学学报(自然科学版),2009,(03):339.
 LI Ke-jing,ZHANG Xiao-bing.Application of Improved Genetic Algorithm to Optimization Design of Projectile Structure[J].Journal of Nanjing University of Science and Technology,2009,(03):339.
[2]张俊芳,秦红霞,贾 晋,等.基于改进遗传算法的AGC机组优化组合研究[J].南京理工大学学报(自然科学版),2009,(06):801.
 ZHANG Jun-fang,QIN Hong-xia,JIA Jin,et al.Optimization of Generator Unit Commitment Including AGC Based on Improved Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(03):801.
[3]黄俊,徐越兰.碳钢焊条熔敷金属力学性能非线性神经网络组合预测[J].南京理工大学学报(自然科学版),2012,36(05):800.
 HUANG Jun,XU Yue-lan.Nonlinear Combination Prediction of Mechanical Properties of CarbonSteel Electrode Deposited Metal Based on Neural Network[J].Journal of Nanjing University of Science and Technology,2012,36(03):800.
[4]门志国,彭秀艳,王兴梅,等.基于GA优化BP神经网络辨识的Volterra级数核估计算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 MEN Zhi guo,PENG Xiu yan,WANG Xing mei,et al.Volterra Series Kernels Estimation Algorithm Based on GA Optimized BP Neural Network Identification[J].Journal of Nanjing University of Science and Technology,2012,36(03):0.
[5]王钟羡,郭晨海,刘 军,等.结构优化设计的猴王遗传算法[J].南京理工大学学报(自然科学版),2004,(04):346.
 WANG Zhong xian,GUO Chen hai,LIU Jun,et al.Monkey-king Genetic Algorithms for Optimal Structural Design[J].Journal of Nanjing University of Science and Technology,2004,(03):346.
[6]李纯莲,王希诚,赵金城.基于浮点数编码的信息熵控制多种群遗传算法[J].南京理工大学学报(自然科学版),2004,(05):453.
 LI Chun-lian,WANG Xi-cheng,ZHAO Jin-cheng.Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding[J].Journal of Nanjing University of Science and Technology,2004,(03):453.
[7]张金萍,等.一种动态种群不对称交叉的新型遗传算法[J].南京理工大学学报(自然科学版),2007,(04):444.
 ZHANG Jin-ping,LIU Jie,LI Yun-gong.Novel Dynamic Population and Anisomerous Crossover Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2007,(03):444.
[8]康明才.基于遗传算法的变电站电压-无功综合控制[J].南京理工大学学报(自然科学版),2002,(05):490.
 KangMingcai.Control Strategy of Voltage and Reactive Power in Substation Based on Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2002,(03):490.
[9]杨云,徐永红,刘凤玉.一种连续探索型自适应遗传算法及其应用[J].南京理工大学学报(自然科学版),2002,(06):580.
 YangYun XuYonghong LiuFengfu.A Self-adaptative Genetic Algorithm Based on Relay Search Method and Its Application[J].Journal of Nanjing University of Science and Technology,2002,(03):580.
[10]赖少发,刘华军.机动目标跟踪支持向量回归学习新方法[J].南京理工大学学报(自然科学版),2017,41(02):264.[doi:10.14177/j.cnki.32-1397n.2017.41.02.019]
 Lai Shaofa,Liu Huajun.Novel approach in maneuvering target tracking based onsupport vector regression[J].Journal of Nanjing University of Science and Technology,2017,41(03):264.[doi:10.14177/j.cnki.32-1397n.2017.41.02.019]

备注/Memo

备注/Memo:
收稿日期:2018-02-27 修回日期:2018-04-08 基金项目:国家自然科学基金(61772273; 61373062) 作者简介:刘皓(1979-),男,硕士,主要研究方向:计算机应用,E-mail:liuhao9@sgepri.sgcc.com.cn; 通讯作者:於东军(1975-),男,博士,教授,主要研究方向:模式识别与智能信息处理、计算机应用,E-mail:njyudj@ njust.edu.cn。 引文格式:刘皓,胡明昕,朱一亨,等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报,2018,42(3):329-334. 投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-06-30