[1]熊 智,袁 翔,黄 威.无源助力自行车建模及其能量回收效率分析[J].南京理工大学学报(自然科学版),2018,42(03):357.[doi:10.14177/j.cnki.32-1397n.2018.42.03.015]
 Xiong Zhi,Yuan Xiang,Huang Wei.Modeling of passive booster bike and its energy recoveryefficiency analysis[J].Journal of Nanjing University of Science and Technology,2018,42(03):357.[doi:10.14177/j.cnki.32-1397n.2018.42.03.015]
点击复制

无源助力自行车建模及其能量回收效率分析()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年03期
页码:
357
栏目:
出版日期:
2018-06-30

文章信息/Info

Title:
Modeling of passive booster bike and its energy recovery efficiency analysis
文章编号:
1005-9830(2018)03-0357-07
作者:
熊 智1袁 翔1黄 威2
1.长沙理工大学 汽车与机械工程学院,湖南 长沙 410114; 2.湖南交通职业技术学院 汽车工程学院,湖南 长沙 410132
Author(s):
Xiong Zhi1Yuan Xiang1Huang Wei2
1.School of Automotive and Mechanical Engineering,Changsha University of Science and Technology, Changsha 410114,China; 2.School of Automotive Engineering,Hunan Communication Polytechnic,Changsha 410132,China
关键词:
无源助力自行车 能量回收效率 能量流动 中度制动
Keywords:
passive booster bikes energy recovery efficiency energy flow moderate brake mode
分类号:
U484
DOI:
10.14177/j.cnki.32-1397n.2018.42.03.015
摘要:
为提高无源助力自行车的效率,研究其能量流动情况及能量回收效率。建立无源助力自行车驱动和回收能量流动模型。分析能量流动情况和系统能量回收时的制动模式。基于MATLAB平台,采用模块化理念建立整车系统模型,仿真分析中度制动模式下的能量回收效率。搭建实验样车,在不同骑行工况下进行中度制动模式下的骑行实验,获取车速、电压等数据,计算能量回收效率。实验结果表明,在中度制动模式下无源助力自行车能量回收效率为10%~18%。
Abstract:
The energy flow and the energy recovery efficiency of a passive booster bike are studied to improve the efficiency. A drive energy flow model and a recovery energy flow model of the passive booster bike are established. The brake mode of energy recovery and the energy flow are analyzed. Based on MATLAB,a passive booster bike system model is established using modular concept,and the energy recovery efficiency under moderate brake mode is simulated. A prototype is established and tested under moderate brake mode and different working conditions. The efficiency of system energy recovery is calculated using the obtained speeds and voltages. Experimental results show that the efficiency of system energy recovery of the passive booster bike under moderate brake mode is 10%~18%.

参考文献/References:

[1] 陈为. 基于自行车造型演变和发展的研究[J]. 南京理工大学学报,1998,22(5):469-473. Chen Wei. Study based on evolution and development of bicycle moulding[J]. Journal of Nanjing University of Science and Technology,1998,22(5):469-473. [2]刘元昌. 电动自行车的社会规制困境与应对策略研究[D]. 南京:南京理工大学公共事务学院,2010. [3]钟晓伟. 电动自行车用无刷直流电机控制系统设计[J]. 电机与控制应用,2011,38(1):20-24. Zhong Xiaowei. Brushless DC motor of electric bicycle control system design[J]. Electric Machines & Control Application,2011,38(1):20-24. [4]赵靖. 行人-自行车对两种交叉口设计模式通行能力的影响[J]. 公路交通科技,2016,33(8):114-119. Zhao Jing. Impact of pedestrian and bicycle on capacity of two design types of intersection[J]. Joumal of Highway and Transportation Research and Development,2016,33(8):114-119. [5]张飞. 我国电动自行车发展状况及管理对策研究[D]. 郑州:郑州大学公共管理学院,2008. [6]袁翔,熊智,袁俊. 一种基于能量回收技术的无源电助力自行车方法与装置[P]. 中国:201310663235. 4,2014-03-26. [7]任桂周,常思勤. 内燃-直线发电集成动力系统的能量流控制策略[J]. 南京理工大学学报,2010,34(6):781-786. Ren Guizhou,Chang Siqin. Energy flow control strategy of internal combustion-linear generator integrated power system[J]. Journal of Nanjing University of Science and Technology,2010,34(6):781-786. [8]袁翔,熊智. 自行车制动能量回收控制系统的设计[J]. 机电工程,2016,33(8):997-1002. Yuan Xiang,Xiong Zhi. Energy recovery control system of bicycle braking[J]. Journal of Mechanical & Electrical Engineering,2016,33(8):997-1002. [9]周云波,常思勤. 基于MATLAB/SimDriveline的某型军用车辆起步过程仿真研究[J]. 南京理工大学学报,2011,35(4):507-512. Zhou Yunbo,Chang Siqin. Military vehicle starting process simulation and analysis based on MATLAB/SimDriveLine[J]. Journal of Nanjing University of Science and Technology,2011,35(4):507-512. [10]Varghese L,Kuncheria J T. Modelling and design of cost efficient novel digital controller for brushless DC motor drive[C]//2014 Annual International Conference on Emerging Research Areas:Magnetics,Machines and Drives(AICERA/iCMMD). Kottayam,India:IEEE,2014:1-5. [11]赵国峰,陈庆伟. 双电机驱动伺服系统齿隙非线性自适应控制[J]. 南京理工大学学报,2007,31(2):187-192. Zhao Guofeng,Chen Qingwei. Adaptive control of dual-motors driving servo system with back lash nonlinearity[J]. Journal of Nanjing University of Science and Technology,2007,31(2):187-192. [12]Sagbas M,Minaei S,Ayten U E. Component reduced current-mode full-wave rectifier circuits using single active component[J]. IET Circuits Devices Syst,2016,10(1):1-11. [13]李春敏. 基于模糊控制的超级电容储能研究[J]. 电子设计工程,2016,24(4):133-136. Li Chunmin. Research on super-capacitor energy storage based on the fuzzy control[J]. Eletronic Design Engineering,2016,24(4):133-136. [14]汪亚霖. 超级电容充电策略研究[J]. 机械工程与自动化,2012(5):170-172. Wang Yalin. Charging strategy research of super capacitor[J]. Mechanical Engineering & Automation,2012(5):170-172. [15]Ferrari M,Bianchi N,Doria A,et al. Development of a hybrid human-electric propulsion system for a velomobile[C]//2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies(EVER). Monte Carlo,Monaco:IEEE,2013:1-8.

备注/Memo

备注/Memo:
收稿日期:2016-12-13 修回日期:2017-10-08 基金项目:湖南省研究生科研创新项目(CX2015B358) 作者简介:熊智(1992-),男,硕士生,主要研究方向:汽车电子及控制、新能源汽车,E-mail:18711032994@163.com; 通讯作者:袁翔(1956-),男,副教授,主要研究方向:汽车电子及控制、新能源汽车等,E-mail:georgeyuan968@126.com。 引文格式:熊智,袁翔,黄威. 无源助力自行车建模及其能量回收效率分析[J]. 南京理工大学学报,2018,42(3):357-363. 投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-06-30