[1]凌 军,宋启祥,房爱东,等.基于局部熵的边缘检测算子选择算法[J].南京理工大学学报(自然科学版),2018,42(04):424.[doi:10.14177/j.cnki.32-1397n.2018.42.04.006]
 Ling Jun,Song Qixiang,Fang Aidong,et al.Algorithm of edge detector choice based on local entropy[J].Journal of Nanjing University of Science and Technology,2018,42(04):424.[doi:10.14177/j.cnki.32-1397n.2018.42.04.006]
点击复制

基于局部熵的边缘检测算子选择算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年04期
页码:
424
栏目:
出版日期:
2018-08-30

文章信息/Info

Title:
Algorithm of edge detector choice based on local entropy
文章编号:
1005-9830(2018)04-0424-06
作者:
凌 军宋启祥房爱东李现伟
宿州学院 信息工程学院,安徽 宿州 234000
Author(s):
Ling JunSong QixiangFang AidongLi Xianwei
Information Engineering College,Suzhou University,Suzhou 234000,China
关键词:
算子选择 边缘检测 边缘点加权 局部熵 边缘局部熵 边缘点加权平均边缘局部熵
Keywords:
detector choice edge detection edge-point-weight local entropy edge local entropy edge-point-weight average edge local entropy
分类号:
TP391
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.006
摘要:
为了在图像处理中选择恰当的边缘检测算子,保证边缘提取的质量,提出边缘点加权平均边缘局部熵,对利用边缘点加权平均边缘局部熵选择边缘检测算子的算法进行了研究。通过边缘检测算子抽取出图像的边缘,计算图像边缘的局部熵,使用边缘像素的灰度信息进行加权,计算出边缘点加权平均边缘局部熵。依据边缘点加权平均边缘局部熵进行边缘检测算子的选择。实验结果表明:算法能有效地选择合适的边缘检测算子,保证获取的图像边缘质量。
Abstract:
To choose suitable edge detectors in image processing and promise quality of edge extraction,an edge-point-weight average edge local entropy is presented. A choice algorithm of edge detectors with edge-point-weight average edge local entropy is studied. Firstly,image edge is drawn out by edge detector and local entropy of image edge is caculated. Secondly,edge-point-weight average edge local entropy of image edge is obtained by weighting local entropy of image edge with edge grey. Edge detector is chosen with edge-point-weight average edge local entropy. Experimental result demonstrates that the algorithm is valid in choosing suitable edge detector and can promise quality of image edge.

参考文献/References:

[1] 凌军. 图像增强中边缘检测算子的选择算法[J]. 宿州学院学报,2015,30(11):102-103.
Ling Jun. Algorithm of choosing edge detector in image enhancement[J]. Journal of Suzhou University,2015,30(11):102-103.
[2]Asha A A,Wenisch S M. Edge detection using multiple ant colony approach[J]. TEM Journal,2017,6(1):137-142.
[3]秦剑,李林. 基于梯度的图像分割新方法[J]. 计算机应用,2009,29(8):2071-2073.
Qin Jian,Li Lin. New image segmentation method based on gradient[J]. Journal of Computer Applications,2009,29(8):2071-2073.
[4]张光年,葛庆平. 基于Marr-Hildreth算子多尺度图像边缘检测[J]. 首都师范大学学报,2005,26(3):17-21.Zhang Guangnian,Ge Qinpin. Multi-scale image edge detection based on Marr Hildreth operator algorithm[J]. Journal of Capital Normal University,2005,26(3):17-21.
[5]魏伟波,芮筱亭. 图像边缘检测方法研究[J]. 计算机工程与应用,2006,42(30):88-92.
Wei Weibo,Rui Xiaoting. Study on edge detection method[J]. Computer Engineering and Applications,2006,42(30):88-92.
[6]刘锁兰. 基于模糊理论的图像分割区域法研究[D]. 南京:南京理工大学计算机科学与工程学院,2008.
[7]Cai Zhaoquan,Liang Yihui,Huang Han. Unsupervised segmentation evaluation:an edge-based method[J]. Multimedia Tools and Applications,2017,76(8):11097-11110.
[8]石丹. 基于数据合并策略的图像分割质量评价技术研究[D]. 西南交通大学信息科学与技术学院,2016.
[9]Cruz H,Eckert M,Meneses J M,et al. Fast evaluation of segmentation quality with parallel computing[J]. Scientific Programming,2017.
[10]Alvarado-Cervantes Rodolfo,Felipe-Riverón E M,Khartchenko V,et al. An adaptive color similarity function suitable for image segmentation and its numerical evaluation[J]. Color Research & Application,2017,42(2):156-172.
[11]Gon?alves V M,Delamaro M E,Nunes F L S. Applying graphical oracles to evaluate image segmentation results[J]. Journal of the Brazilian Computer Society,2017,23(1):1-17.
[12]Su Tengfei,Zhang Shengwei. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,130:256-276.
[13]岳改丽,王栋,杨蕊. 几种边缘检测算子在红外图像处理方面应用研究[J]. 西安科技大学学报,2012,32(4):500-504.
Yue Gaili,Wang Dong,Yang Rui. Application of several edge detection operators in infrared images processing[J]. Journal of Xi’an University of Science and Technology,2012,32(4):500-504.
[14]磨少清. 边缘检测及其评价方法的研究[D]. 天津:天津大学电气与自动化学院,2011.

相似文献/References:

[1]王洪元,周则明,王平安①,等.一种改进Snake模型的边缘检测算法[J].南京理工大学学报(自然科学版),2003,(04):395.
 WangHongyuan ZhouZeming WangPingan XiaDeshen.An Improved Snake Model for Image Edge Detection[J].Journal of Nanjing University of Science and Technology,2003,(04):395.
[2]娄震,陆建峰,杨静宇.用于X射线图像的角点检测方法[J].南京理工大学学报(自然科学版),2002,(06):561.
 LouZhen LuJianfeng YangJingyu.Corner Detection Used for X-ray Images[J].Journal of Nanjing University of Science and Technology,2002,(04):561.
[3]罗 元,计 超,胡章芳.混合分形和小波变换亚像素图像边缘检测算法[J].南京理工大学学报(自然科学版),2013,37(02):275.
 Luo Yuan,Ji Chao,Hu Zhangfang.Sub-pixel image edge detection algorithm based on mixed fractal and wavelet transform[J].Journal of Nanjing University of Science and Technology,2013,37(04):275.
[4]张琳梅,赵 莉.改进Canny的核磁共振图像伪影校正算法[J].南京理工大学学报(自然科学版),2016,40(01):50.
 Zhang Linmei,Zhao Li.Correction algorithm of artifact in magnetic resonance imagingbased on improved Canny[J].Journal of Nanjing University of Science and Technology,2016,40(04):50.
[5]许乐灵,胡 石.一种引导滤波自适应双阈值优化边缘检测算法[J].南京理工大学学报(自然科学版),2018,42(02):177.[doi:10.14177/j.cnki.32-1397n.2018.42.02.007]
 Xu Leling,Hu Shi.Adaptive double threshold modified edge detection algorithmfor boot filtering[J].Journal of Nanjing University of Science and Technology,2018,42(04):177.[doi:10.14177/j.cnki.32-1397n.2018.42.02.007]

备注/Memo

备注/Memo:
收稿日期:2017-09-06 修回日期:2018-07-05
基金项目:宿州区域发展协同创新中心课题资助(2016szxt06,2016szxt05); 宿州学院2015年质量工程项目(szxy2015jy12); 安徽省高等学校质量工程研究重大项目(2016jyxm1026)
作者简介:凌军(1973-),男,讲师,主要研究方向:算法设计、图像处理、计算机视觉,E-mail:linjunnew@126.com。
引文格式:凌军,宋启祥,房爱东,等. 基于局部熵的边缘检测算子选择算法[J]. 南京理工大学学报,2018,42(4):424-429. 投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-08-30