[1]孙京诰,薛 瑞,袁吴月.非线性预测控制在三容水箱液位控制系统中的应用[J].南京理工大学学报(自然科学版),2018,42(04):439.[doi:10.14177/j.cnki.32-1397n.2018.42.04.008]
 Sun Jinggao,Xue Rui,Yuan Wuyue.Application of nonlinear predictive control inthree-tank liquid-level control system[J].Journal of Nanjing University of Science and Technology,2018,42(04):439.[doi:10.14177/j.cnki.32-1397n.2018.42.04.008]
点击复制

非线性预测控制在三容水箱液位控制系统中的应用()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年04期
页码:
439
栏目:
出版日期:
2018-08-30

文章信息/Info

Title:
Application of nonlinear predictive control inthree-tank liquid-level control system
文章编号:
1005-9830(2018)04-0439-06
作者:
孙京诰薛 瑞袁吴月
华东理工大学 化工过程先进控制与优化技术教育部重点实验室,上海 200237
Author(s):
Sun JinggaoXue RuiYuan Wuyue
Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry Education,East China University of Science and Technology,Shanghai 200237,China
关键词:
非线性多变量系统 快速预测控制 无迹卡尔曼滤波 三级液位控制系统
Keywords:
multivariable predictive control nonlinear system unscented Kalman filter three-level control system
分类号:
TP273
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.008
摘要:
为了进一步提高非线性模型预测控制的计算速度、控制精度和抗干扰能力,该文提出了一种基于无迹卡尔曼滤波和快速阶梯预测控制结合的控制器设计方法。该方法在快速阶梯预测控制器的基础上,加入了基于奇异值分解的无迹卡尔曼滤波算法(Singular value decomposition unscented Kalman filter),在反馈校正之前先通过滤波降低噪声干扰,从而降低控制误差。通过三容水箱液位控制模型对该控制器设计方法进行了仿真验证,从仿真结果中可以看出该控制器能够在计算速度达标的前提下,提高系统的控制精度和稳定性。该结果证明了改进后的控制器能进一步有效克服噪声、模型失配等情况,很好地提升了控制器的可靠性。
Abstract:
In order to further improve the calculation speed,control precision and stability of the nonlinear model predictive control,a controller design method based on the combination of Singular Value Decomposition Unscented Kalman Filter and Fast Ladder Predictive control is presented in this paper. Based on the Fast Ladder Predictive Controller,this method adds the Unscented Kalman Filter algorithm to reduce the noise interference and the control error. The controller design method is validated by the level control model of the three-tank water level. Simulation results prove that the method can improve the control precision and stability of the system under the noisy conditions,while ensuring the calculation speed.

参考文献/References:

[1] Grüne L,Pannek J. Nonlinear model predictive control[J]. Process Automation Handbook,2011,3(3-4):43-66.
[2]Diehl M,Bock H G,Schl?der J P,et al. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations[J]. Journal of Process Control,2002,12(4):577-585.
[3]郑涛,何德峰,陈薇,等. 快速阶梯式非线性预测控制[J]. 系统仿真学报,2007,19(22):5206-5209.
Zheng Tao,He Defeng,Chen Wei,et al. Fast stair-like nonlinear model predictive control algorithm[J]. Journal of System Simulation,2007,19(22):5206-5209.
[4]郑涛,吴刚,刘光宏. 分层多目标非线性预测控制[J]. 江南大学学报(自然科学版),2010,9(4):440-443.
Zheng Tao,Wu Gang,Liu Guanghong. Stratified multi-objective nonlinear model predictive control[J]. Journal of Jiangnan University of Science and Technology,2010,9(4):440-443.
[5]Pan Y,Wang J. Two neural network approaches to model predictive control[C]//2008 American Control Conference. Seattle,USA:IEEE,2008:1685-1690.
[6]Wang T,Gao H,Qiu J. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control[J]. IEEE Transactions on Neural Networks & Learning Systems,2016,27(2):416-425.
[7]Chakrabarty A,Dinh V,Corless M J,et al. Support vector machine informed explicite nonlinear model predictive control using low-discrepancy sequences[J]. IEEE Transactions on Automatic Control,2016,62(1):135-148.
[8]冯凯,卢建刚,陈金水. 基于最小二乘支持向量机的MIMO线性参数变化模型辨识及预测控制[J]. 化工学报,2015(1):197-205.
Feng Kai,Lu Jiangang,Chen Jinshui. Identification and model predictive control of LPV models based on LS-SVM for MIMO system[J]. Journal of Chemical Industry and Engineering,2015(1):197-205.
[9]Yan Z,Wang J. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks[J]. IEEE Transactions on Neural Networks & Learning Systems,2014,25(3):457-469.
[10]关长亮,王贵成. 基于误差补偿的谷氨酸发酵过程模型预测控制研究[J]. 沈阳化工大学学报,2016,30(1):70-75.
Guan Changliang,Wang Guicheng. Model predictive control based on error compensation for glutamic acid fermentation process[J]. Journal of Shenyang University of Chemical Technology,2016,30(1):70-75.
[11]张文,孙瑞胜. EKF与UKF的性能比较及应用[J]. 南京理工大学学报,2015(5):614-618.
Zhang Wen,Sun Ruisheng. Research on performance comparison of EKF and UKF and their application[J].Journal of Nanjing University of Science and Technology,2015(5):614-618.
[12]杨兆军,杨川贵,陈菲,等. 基于最小二乘算法和SVDUKF算法的电液伺服加载优化[J]. 吉林大学学报(工),2014,44(2):392-397.
Yang Zhaojun,Yang Chuangui,Chen Fei,et al. Optimization of the electro-hydraulic servo loading based on least square and SVDUKF algorithms[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(2):392-397.

备注/Memo

备注/Memo:
收稿日期:2017-09-25 修回日期:2018-07-04
作者简介:孙京诰(1971-),男,博士,副教授,主要研究方向:非线性自适应控制及其应用,E-mail:jgsun@ecust.edu.cn;
通讯作者:薛瑞(1994-),男,硕士生,主要研究方向:多变量非线性模型预测控制,E-mail:xr94118@163.com。
引文格式:孙京诰,薛瑞,袁吴月. 非线性预测控制在三容水箱液位控制系统中的应用[J]. 南京理工大学学报,2018,42(4):439-444. 投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-08-30