[1]柏宗春,吕晓兰.基于CFD技术盘式磁流变液制动器结构及性能[J].南京理工大学学报(自然科学版),2018,42(04):474.[doi:10.14177/j.cnki.32-1397n.2018.42.04.013]
 Bai Zongchun,Lv Xiaolan.Structure and performance of disc-type magnetorheologicalfluid brake based on CFD[J].Journal of Nanjing University of Science and Technology,2018,42(04):474.[doi:10.14177/j.cnki.32-1397n.2018.42.04.013]
点击复制

基于CFD技术盘式磁流变液制动器结构及性能()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年04期
页码:
474
栏目:
出版日期:
2018-08-30

文章信息/Info

Title:
Structure and performance of disc-type magnetorheologicalfluid brake based on CFD
文章编号:
1005-9830(2018)04-0474-10
作者:
柏宗春12吕晓兰12
江苏省农业科学院 1.农业设施与装备研究所; 2.农业部长江中下游设施农业工程重点实验室,江苏 南京 210014
Author(s):
Bai Zongchun12Lv Xiaolan12
1.Institute of Agricultural Facilities and Equipment; 2.Key Laboratory of Protected AgricultureEngineering in the Middle and Lower Reaches of Yangtze River,Ministry of Agriculture,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China
关键词:
磁流变液 盘式制动器 流场仿真 宾汉模型 制动力矩 表观黏度 剪切应力
Keywords:
magnetorheological fluid disc-type brake flow field simulation Bingham model braking torque apparent viscosity shear stress
分类号:
TG156; TP319
DOI:
10.14177/j.cnki.32-1397n.2018.42.04.013
摘要:
为了研究转盘结构对盘式磁流变液制动器的性能的影响,对制动器磁流变液流场进行了仿真和试验研究。根据制动器的结构特点和磁流变液宾汉模型理论,运用计算流体动力学(Computational fluid dynamics,CFD)软件Fluent对不同转盘结构下,制动器内磁流变液流场的速度、压力、黏度及剪切应力分布进行仿真,得到制动力矩随结构和磁场强度的变化规律,并进行了试验验证。仿真及试验结果表明:磁流变液腔室宽度对制动力矩影响较小,表面开辐射状槽时转盘制动力矩最大,开有通孔的情况次之,开环形槽时制动力矩最小。研究结果为磁流变液制动器的结构设计提供了参考依据。
Abstract:
In order to study the effect of turntable structure on the performance of disc-type the magnetorheological fluid(MRF)brake,simulations and experiments of the MRF in the brake are carried out. A computational fluid dynamics(CFD)model of the MRF in the brake is built according to the structural characteristics of the brake and the Bingham model of MRF. Simulations with ring grooves,radial grooves and through holes on the surface of the turntable are carried out at a certain speed and magnetic field strength using Fluent respectively. The velocity,pressure,viscosity and shear stress distribution of the MRF flow in the brake are analyzed. The braking torque of the MRF acting on the turntable is obtained by using the integral method. In order to verify the simulation results,experiments with different turntables are carried out. The simulation and experimental results show that the size of the MRF chamber width has little effect on the braking torque; the braking torque is the maximum when the turntable has radial grooves on the surface,the case with through-holes is the second,and the case with ring grooves is the minimum. The research results provide references for the structural design of the MRF brake.

参考文献/References:

[1] 柏宗春,李小宁,陈新. 基于磁流变原理的旋转制动器的研究[C]//第六届全国流体传动与控制学术会议.兰州:中国机械工程学会流体传动与控制分会,2010:28-30.
[2]柏宗春,李小宁. 伺服摆动气缸内置式磁流变阻尼器优化设计[J]. 南京理工大学学报,2012,36(3):534-539.
Bai Zongchun,Li Xiaoning. Optimization design of magnetorheological damper inserted into servo pneumatic rotary actuator[J]. Journal of Nanjing University of Science and Technology,2012,36(3):534-539.
[3]胡明,王炅,范一清. 磁流变液孔口出流数学模型[J]. 上海交通大学学报,2017,51(9):1065-1070.
Hu Ming,Wang Jiong,Fan Yiqing. Mathematical model of orifice outflow for magnetorheological fluid[J]. Journal of Shanghai Jiaotong University,2017,51(9):1065-1070.
[4]吴俊岐,侯保林. 基于FLUENT的磁流变阻尼器阻尼特性分析[J]. 兵器装备工程学报,2017,38(11):142-145.
Wu Junqi,Hou Baolin. Analysis of damping characteristics of magnetorheological(MR)damper based on FLUENT[J]. Journal of Ordnance Equipment Engineering,2017,38(11):142-145.
[5]郑军,张光辉,曹兴进. 传动装置中磁流变液的稳态流动分析[J]. 中南大学学报(自然科学版),2008,39(1):149-154.
Zheng Jun,Zhang Guanghui,Cao Xingjin. Flow analysis of magnetorheological fluid in transmission device in steady state[J]. Journal of Central South University(Natural Science),2008,39(1):149-154.
[6]贺建民,黄金,钟银辉. 磁流变液在圆筒间的黏塑性流动[J]. 功能材料,2006,37(6):992-993.
He Jianmin,Huang Jin,Zhong Yinhui. Viscoplastic flow of the MR fluid between two cylinders[J]. Journal of Functional Materials,2006,37(6):992-993.
[7]刘成晔,蒋科军,衣丰艳. 圆筒式磁流变液制动器内流场数值分析[J]. 系统仿真学报,2011,23(3):628-631.
Liu Chenye,Jiang Kejun,Yi Fengyan. Numerical analysis of inner flow field for cylindrical magnetor-heological brake[J]. Journal of System Simulation,2011,23(3):628-631.
[8]陈庆庆,刘新华. 基于Fluent的盘式磁流变液制动器优化设计[J]. 制造技术与机床,2012(6):79-81.
Chen Qingqing,Liu Xinhua. Optimized design of the disk-shaped magneto-rheological fluid brake based on Fluent[J]. Manufacturing Technology and Machine Tools,2012(6):79-81.
[9]柏宗春. 内嵌磁流变阻尼器摆动伺服气缸的研究[D]. 南京:南京理工大学机械工程学院,2014.
[10]魏齐龙,王超,罗清,等. 磁场作用下磁流变液的流变行为[J]. 磁性材料及器件,2013,44(1):6-9.
Wei Qilong,Wang Chao,Luo Qing,et al. Rheological behaviors of a magnetorheological fluid in magnetic field[J]. Journal of Magnetic Materials and Devices,2013,44(1):6-9.
[11]邹明松. 磁流变阻尼器流体力学分析及动力学仿真[D]. 南京:南京理工大学机械工程学院,2007.
[12]路国平,邓国红. 磁流变液在平行圆盘间的挤压流动分析[J]. 重庆理工大学学报,2011(12):55-59.Lu Guoping,Deng Guohong. Squeeze flow analysis of magnetorheological fluids between two parallel disks[J]. Journal of Chongqing University of Technology,2011(12):55-59.
[13]郑军,曹兴进,张光辉. 传动装置中磁流变液瞬态流动特性的数值计算[J]. 西安交通大学学报,2007,41(9):1053-1057.
Zheng Jun,Cao Xingjin,Zhang Guanghui. Numerical evaluation for transient flow characteristics of magneto-rheological fluid in the transmission devive[J]. Journal of Xi’an Jiaotong University,2007,41(9):1053-1057.
[14]王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2006.
[15]Bossis G,Khuzir P,Lacis S,et al. Yield behavior of magnetorheological suspensions[J]. Journal of Magnetism and Magnetic Materials,2003(258):456-458.

相似文献/References:

[1]王良模,彭育辉①,曾小平.浮钳盘式制动器的有限元分析[J].南京理工大学学报(自然科学版),2003,(06):756.
 Wang Liangmo Peng Yuhui Zeng Xiaoping.Finite Element Analysis on Key Parts of Float Disk Brake[J].Journal of Nanjing University of Science and Technology,2003,(04):756.

备注/Memo

备注/Memo:
收稿日期:2017-10-25 修回日期:2018-04-10
基金项目:江苏省农业科技自主创新资金CX(16)1002; 江苏省现代农业重点项目(BE2017303); 农业部设施农业工程重点实验室开放课题
作者简介:柏宗春(1981-),男,博士,主要研究方向:磁流变气动控制技术,E-mail:vipmaple@126.com;
通讯作者:吕晓兰(1980-),女,研究员,主要研究方向:农业装备和植保技术,E-mail:lxlanny@126.com。
引文格式:柏宗春,吕晓兰.基于CFD技术盘式磁流变液制动器结构及性能[J]. 南京理工大学学报,2018,42(4):474-483. 投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-08-30