[1]桑 楠,刘润乔,赵万忠.汽车主动前轮转向与直接横摆力矩协调控制[J].南京理工大学学报(自然科学版),2018,42(06):655.[doi:10.14177/j.cnki.32-1397n.2018.42.06.004]
 Sang Nan,Liu Runqiao,Zhao Wanzhong.Coordinated control of active front steering and directyaw moment for vehicles[J].Journal of Nanjing University of Science and Technology,2018,42(06):655.[doi:10.14177/j.cnki.32-1397n.2018.42.06.004]
点击复制

汽车主动前轮转向与直接横摆力矩协调控制()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年06期
页码:
655
栏目:
出版日期:
2018-12-30

文章信息/Info

Title:
Coordinated control of active front steering and directyaw moment for vehicles
文章编号:
1005-9830(2018)06-0655-07
作者:
桑 楠1刘润乔2赵万忠2
1.常州工学院 机械与车辆工程学院,江苏 常州 213032; 2.南京航空航天大学 能源与动力学院,江苏 南京 210016
Author(s):
Sang Nan1Liu Runqiao2Zhao Wanzhong2
1.School of Mechanical and Vehicle Engineering,Changzhou Institute of Technology,Changzhou 213032,China; 2.College of Energy and Power Engineering,Nanjing University of Aeronauticsand Astronautics,Nanjing 210016,China
关键词:
汽车 主动前轮转向 直接横摆力矩 线性二自由度模型 自抗扰控制
Keywords:
vehicles active front steering direct yaw moment linear two-degree-of-freedom model active disturbance rejection control
分类号:
U461.1; U461.6
DOI:
10.14177/j.cnki.32-1397n.2018.42.06.004
摘要:
为充分利用路面的纵横向附着力,改善车辆的操纵稳定性,提出基于自抗扰解耦技术的主动前轮转向(AFS)与直接横摆力矩(DYC)集成控制方法。基于仿真实验确定发生侧滑时的车辆前轮转向临界角,并用来划分AFS与DYC各自的工作区域。对AFS与DYC的控制进行加权,使AFS控制的退出与DYC控制的介入渐变进行。基于线性二自由度车辆模型设计了AFS与DYC的自抗扰(ADR)集成控制器。在CarSim中建立车辆模型,由Simulink的控制模型进行控制,进行了高低附着路面的双移线实验。AFS与DYC集成控制相对于AFS、DYC分别单独作用,在高附着路面,其横摆角速度最大值分别下降20%和11.8%,质心侧偏角最大值分别下降28.1%和17.9%,侧向加速度最大值分别下降26.1%和20.7%; 在低附着路面,其横摆角速度最大值分别下降14.5%和13.3%,质心侧偏角最大值分别下降6.7%和1.4%,侧向加速度最大值分别下降9.7%和3.5%。实验结果表明,该文协调控制策略及集成控制方法能够提高车辆在高低附着路面行驶的稳定性。
Abstract:
In order to make full use of the longitudinal and lateral adhesion of roads and improve the controllability and stability of vehicles,an integrated control method of active front steering(AFS)and direct yaw moment control(DYC)based on the active disturbance rejection decoupling technology is proposed. The front steering critical angle of a vehicle is determined based on simulation test and used to divide the working area of AFS and DYC. The control of AFS and DYC is weighted,and the switch of AFS and DYC is gradual. The active disturbance rejection(ADR)integrated controller for AFS and DYC is designed based on a linear two-degree-of-freedom vehicle model. A vehicle model is built in CarSim and controlled by Simulink’s control model. Double lane change tests of the high and low adhesion roads are carried out. Compared with the independent action of AFS and DYC,the integrated control AFS and DYC reduces the maximum yaw rate by 20% and 11.8% respectively,the maximum sideslip angle by 28.1% and 17.9% respectively,and the maximum lateral acceleration by 26.1% and 20.7% respectively on the high adhesion road; on the low adhesion road,the maximum yaw rates decrease by 14.5% and 13.3%,the maximum sideslip angles decrease by 6.7% and 1.4%,and the maximum lateral acceleration decreases by 9.7% and 3.5%,respectively. The simulation results show that the proposed coordinated control strategy and integrated control method can improve the stability of vehicles driving on high and low adhesion roads.

参考文献/References:

[1] 姜炜,余卓平,张立军. 汽车底盘集成控制综述[J]. 汽车工程,2007,29(5):420-425.
Jiang Wei,Yu Zhuoping,Zhang Lijun. A review on integrated chassis control[J]. Automotive Engineering,2007,29(5):420-425.
[2]Aripin M K. A review on integrated active steering and braking control for vehicle yaw stability system[J]. Jurnal Teknologi,2014,71(2):105-111.
[3]陈无畏,刘翔宇,黄鹤,等. 考虑路面影响的车辆稳定性控制质心侧偏角动态边界控制[J]. 机械工程学报,2012,48(14):112-118.
Chen Wuwei,Liu Xiangyu,Huang He,et al. Research on side slip angle dynamic boundary control for vehicle stability control considering the impact of road surface[J]. Journal of Mechanical Engineering,2012,48(14):112-118.
[4]Pacejka H B. Non-linearities in road vehicle dynamics[J]. Vehicle System Dynamics,1986,15(5):237-254.
[5]Guo Konghui. A study of a phase plane representation for identifying vehicle behavior[J]. Vehicle System Dynamics,2007,15(sup1):152-167.
[6]He J,Crolla D A,Levesley M C,et al. Coordination of active steering,driveline,and braking for integrated vehicle dynamics control[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2006,220(10):1401-1420.
[7]熊璐,曲彤,冯源. 极限工况下车辆行驶的稳定性判断依据[J]. 机械工程学报,2015,51(10):103-111.
Xiong Lu,Qu Tong,Feng Yuan. Stability criterion for the vehicle under critical driving situation[J]. Journal of Mechanical Engineering,2015,51(10):103-111.
[8]张文浩,李玉芳,陈明诺. 基于转向临界的AFS和ESC集成控制研究[J]. 重庆理工大学学报(自然科学),2018,32(1):68-76.
Zhang Wenhao,Li Yufang,Chen Mingnuo. Research on integrated control of AFS and ESC based on steering critical[J]. Journal of Chongqing University of Technology(Natural Science),2018,32(1):68-76.
[9]Yim S. Coordinated control of ESC and AFS with adaptive algorithms[J]. International Journal of Automotive Technology,2017,18(2):271-277.
[10]Yim S. Unified chassis control with electronic stability control and front steering for under-steer prevention[J]. International Journal of Automotive Technology,2015,16(5):775-782.
[11]Yim S. Integrated chassis control with adaptive algorithms[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2016,230(9):1246-1272.
[12]Boada M J L,Boada B L,Munoz A,et al. Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2006,220(3):253-267.
[13]Li Gang,Hong Wei,Liang Heqi. Four-wheel independently driven in-wheel motors electric vehicle AFS and DYC integrated control[C]//SAE 2012 World Congress & Exhibition. Detroit,USA:SAE Publication Group,2012:682-688.
[14]Mashadi B,Majidi M. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle[J]. International Journal of Vehicle Design,2011,56(1-4):246-269.
[15]桑楠,魏民祥. 车辆AFS与主动悬架的自抗扰控制方法[J]. 南京理工大学学报,2017,41(2):165-172.
Sang Nan,Wei Minxiang. Active disturbance rejection control method of active front wheel steering and active suspension system of vehicle[J]. Journal of Nanjing University of Science and Technology,2017,41(2):165-172.
[16]韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社,2008.
[17]GB/T6323-2014,汽车操纵稳定性实验方法[S].
[18]ISO/FDIS 3888-1-2002,Passenger cars—Test track for a severe lane change manoeuvre-part 1:Double lane change[S].
[19]郭孔辉. 驾驶员-汽车闭环系统操纵运动的预瞄最优曲率模型[J]. 汽车工程,1984(3):1-16.
Guo Konghui. Drivers-vehicle close-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984(3):1-16.

相似文献/References:

[1]林棻,赵又群.汽车侧偏角估计方法比较[J].南京理工大学学报(自然科学版),2009,(01):122.
 LIN Fen,ZHAO You-qun.Comparison of Methods for Estimating Vehicle Side Slip Angle[J].Journal of Nanjing University of Science and Technology,2009,(06):122.
[2]王良模,彭育辉①,曾小平.浮钳盘式制动器的有限元分析[J].南京理工大学学报(自然科学版),2003,(06):756.
 Wang Liangmo Peng Yuhui Zeng Xiaoping.Finite Element Analysis on Key Parts of Float Disk Brake[J].Journal of Nanjing University of Science and Technology,2003,(06):756.
[3]王良模,曾小平,于鹏晓.汽车液压制动系统设计与分析软件的开发[J].南京理工大学学报(自然科学版),2001,(03):247.
 WangLiangmo ZengXiaoping YuPengxiao.The Development of the Software of Designing and Analyzing Vehicle Brake System[J].Journal of Nanjing University of Science and Technology,2001,(06):247.
[4]丁玉庆.汽车振动系统的简化及数学模型的建立[J].南京理工大学学报(自然科学版),2001,(04):391.
 DingYuqing.On Setting up Simplified and Mathematical Model of Truck Vibration System[J].Journal of Nanjing University of Science and Technology,2001,(06):391.
[5]王良模,孙刚,于鹏晓,等.鼓式制动器效能因数的计算研究[J].南京理工大学学报(自然科学版),1999,(03):32.
 WangLiangmo SunGang YuPengxiao LuQiang PengYuhui.A Study on the Calculation of Drum Brakes Efficiency Factor[J].Journal of Nanjing University of Science and Technology,1999,(06):32.
[6]张河,翟性泉,李豪杰.汽车安全气囊磁电式传感器的设计与研究[J].南京理工大学学报(自然科学版),1999,(04):324.
 ZhangHe ZhaiXingquan LiHaojie.Design and Research of Magnetic electric Sensor for Safety Airbag of Automobile[J].Journal of Nanjing University of Science and Technology,1999,(06):324.
[7]刘振吉,邓德贵,朱晓,等.判定汽车失效分布的统一线性检验法[J].南京理工大学学报(自然科学版),1999,(05):438.
 LiuZhenji DengDegui ZhuXiao MaYumin.The Consolidated Linearity Testing Method to Determine Automobile Failure Distributions[J].Journal of Nanjing University of Science and Technology,1999,(06):438.
[8]王良模,王和福,陈锦荣,等.IVECO 汽车驱动桥试验台的研制[J].南京理工大学学报(自然科学版),1997,(02):97.
 Wang Liangmo Wang Hefu Chen Jinrong Lin Zhilian Cao Yuhua.The Developmet of the IVECO Automobile Driving Shaft’s Test[J].Journal of Nanjing University of Science and Technology,1997,(06):97.
[9]杨江子,商庆清,潘江静.汽车效果图的一种简捷画法[J].南京理工大学学报(自然科学版),1996,(04):57.
 YangJiangzi ShangQingqing PanJiangjing.A Simple Pictorial Drawing of A Car[J].Journal of Nanjing University of Science and Technology,1996,(06):57.
[10]马玉民,蔡经涵.汽车产品可靠性评估方法[J].南京理工大学学报(自然科学版),1994,(05):71.
 Ma Yumin.The Evaluation Method for Reliability of Automobile Products.[J].Journal of Nanjing University of Science and Technology,1994,(06):71.

备注/Memo

备注/Memo:
收稿日期:2018-08-26 修回日期:2018-10-24
基金项目:国家自然科学基金(51775268)
作者简介:桑楠(1969-),男,博士,副教授,主要研究方向:汽车主动安全技术,E-mail:sangn@czust.edu.cn。
引文格式:桑楠,刘润乔,赵万忠. 汽车主动前轮转向与直接横摆力矩协调控制[J]. 南京理工大学学报,2018,42(6):655-661.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-12-30