[1]张子振,储煜桂.一类具有阶段结构的时滞生态流行病模型周期解[J].南京理工大学学报(自然科学版),2018,42(06):756.[doi:10.14177/j.cnki.32-1397n.2018.42.06.018]
 Zhang Zizhen,Chu Yugui.Periodic solutions of delayed eco-epidemiological modelwith stage structure[J].Journal of Nanjing University of Science and Technology,2018,42(06):756.[doi:10.14177/j.cnki.32-1397n.2018.42.06.018]
点击复制

一类具有阶段结构的时滞生态流行病模型周期解()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
42卷
期数:
2018年06期
页码:
756
栏目:
出版日期:
2018-12-30

文章信息/Info

Title:
Periodic solutions of delayed eco-epidemiological modelwith stage structure
文章编号:
1005-9830(2018)06-0756-07
作者:
张子振储煜桂
安徽财经大学 管理科学与工程学院,安徽 蚌埠 233030
Author(s):
Zhang ZizhenChu Yugui
School of Management Science and Engineering,Anhui University of Financeand Economics,Bengbu 233030,China
关键词:
阶段结构 时滞 生态流行病模型 食饵种群 捕食者种群 规范型理论 中心流形定理
Keywords:
stage structure delay eco-epidemiological model prey predators normal form theory center manifold theorem
分类号:
O175.12
DOI:
10.14177/j.cnki.32-1397n.2018.42.06.018
摘要:
为了控制疾病的传播,研究一类食饵种群具有阶段结构、捕食者种群具有疾病的时滞捕食系统模型。以捕食者种群疾病的潜伏期时滞为分岔参数,通过分析相应特征方程根的分布情况,讨论了模型正平衡点局部渐近稳定和存在Hopf分岔的充分条件。利用规范型理论和中心流形定理推导出确定Hopf分岔方向和分岔周期解稳定性的显式公式。利用仿真示例验证了结果的正确性。
Abstract:
A delayed eco-epidemiological model with a stage structure for the prey and a transmissible disease spreading in the predator is investigated to control disease. The necessary conditions of the local stability of the positive equilibrium and the existence of a Hopf bifurcation are discussed by regarding the latent delay of the predator as the bifurcating parameter and analyzing the distribution of the roots of the associated characteristic equation. Explicit formulas determining the direction of the Hopf bifurcation and the stability of the bifurcation periodic solutions are derived by using the normal form theory and the center manifold theorem. The obtained results are verified by a numerical example.

参考文献/References:

[1] Agrawal R,Jana D,Upadhyay R K,et al. Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model:Double Hopf-bifurcation to chaos[J]. Journal of Applied Mathematics & Computing,2017,55(1-2):513-547.
[2]蒋芮,刘华,谢梅,等. 具有HollingⅡ型功能反应和Allee效应的捕食系统模型[J]. 高校应用数学学报A辑,2016,31(4):441-450.
Jiang Rui,Liu Hua,Xie Mei,et al. A predator-prey system model with Holling II functional response and Allee effect[J]. Applied Mathematics A Journal of Chinese Universities,Series A,2016,31(4):441-450.
[3]刘骧,邱志鹏. 一类带时滞媒介-宿主传染病模型的全局稳定性[J]. 南京理工大学学报,2016,40(5):589-593.
Liu Xiang,Qiu Zhipeng. Global stability analysis of delayed vector-host epidemic model[J]. Journal of Nanjing University of Science and Technology,2016,40(5):589-593.
[4]Morozov A Y. Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection:A model study[J]. Theoretical Ecology,2012,5(4):517-532.
[5]Zhang Qiumei,Jiang Daqing,Liu Zhenwen,et al. Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise[J]. Journal of Mathematical Analysis and Applications,2016,433(1):121-148.
[6]Hu Guangping,Li Xiaoling. Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey[J]. Chaos,Solitons and Fractals,2012,45(3):229-237.
[7]刘俊利,贾滢,张太雷. 仅食饵具有疾病的生态传染病模型的全局形态分析[J]. 合肥工业大学学报(自然科学版),2017,40(6):860-864.
Liu Junli,Jia Ying,Zhang Tailei. Global behavior of an eco-epidemic model with disease in the prey[J]. Journal of Hefei University of Technology(Natural Science),2017,40(6):860-864.
[8]Upadhyay R K,Roy P. Spread of a disease and its effect on population dynamics in an eco-epidemiological system[J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(12):4170-4184.
[9]Zhang Jiafang,Li Wantong,Yan Xiangping. Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system[J]. Applied Mathematics and Computation,2008,198(2):865-876.
[10]Hilker F M,Paliaga M,Venturino E. Diseased social predators[J]. Bulletin of Mathematical Biology,2017,79(10):2175-2196.
[11]Francomano E,Hilker F M,Paliaga M,et al. Separatrix reconstruction to identify tipping points in an eco-epidemiological model[J]. Applied Mathematics and Computation,2018,318(5):80-91.
[12]Wang Lingshu,Xu Rui,Feng Guanghui. Modelling and analysis of an eco-epidemiological model with time delay and stage structure[J]. Journal of Applied Mathematics and Computing,2016,50(1):175-197.
[13]Li Xiuling,Wei Junjie. On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays[J]. Chaos,Solitons and Fractals,2005,26(2):519-526.
[14]Hassard B D,Kazarinoff N D,Wan Y H. Theory and applications of Hopf bifurcation[M]. Cambridge,UK:Cambridge University Press,1981.
[15]Meng Xinyou,Huo Haifeng,Xiang Hong. Hopf bifurcation in a three-species system with delays[J]. Journal of Applied Mathematics and Computing,2011,35(1-2):635-661.
[16]Xu Changjin,Zhang Qiming. Qualitative analysis for a Lotka-Volterra model with time delays[J]. WSEAS Transactions on Mathematics,2014,13(1):603-614.
[17]Bianca C,Ferrara M,Guerrini L. The Cai model with time delay:Existence of periodic solutions and asymptotic analysis[J]. Applied Mathematics & Information Sciences,2013,7(1):21-27.
[18]万阿英. 几类时滞动力系统的分支分析[D]. 哈尔滨:哈尔滨工业大学理学院,2009.

相似文献/References:

[1]苗国英,徐胜元.带有随机噪声和时滞的多自主体系统均方趋同控制[J].南京理工大学学报(自然科学版),2012,36(02):338.
 MIAO Guo-ying,XU Sheng-yuan.Mean Square Consensus Control of Multi-agent Systems with Stochastic Noises and Time Delays[J].Journal of Nanjing University of Science and Technology,2012,36(06):338.
[2]宋晓娜,徐胜元,沈浩,等.不确定T-S模糊时变时滞系统的时滞依赖无源输出反馈控制[J].南京理工大学学报(自然科学版),2011,(01):6.
 SONG Xiao-na,XU Sheng-yuan,SHEN Hao,et al.Delay-dependent Passive Output Feedback Control for Uncertain T-S Fuzzy Time-varying Delay Systems[J].Journal of Nanjing University of Science and Technology,2011,(06):6.
[3]孙金生,张士娟,王执铨.不确定离散时滞系统的鲁棒完整性设计[J].南京理工大学学报(自然科学版),2002,(02):157.
 SunJinsheng ZhangShijuan WangZhiquan.Robust Integrity Design of Uncertain DiscreteTime-delay Systems[J].Journal of Nanjing University of Science and Technology,2002,(06):157.
[4]徐金梁.自校正调节器全部参数在线辨识的一种新设想[J].南京理工大学学报(自然科学版),1982,(04):117.
[5]夏 慧,陈庆伟.小型无人直升机非脆弱鲁棒H∞控制器设计方法研究[J].南京理工大学学报(自然科学版),2015,39(03):272.
 Xia Hui,Chen Qingwei.Robust non-fragile H∞ controller design method for small-scale unmanned helicopter[J].Journal of Nanjing University of Science and Technology,2015,39(06):272.
[6]刘 骧,邱志鹏.一类带时滞媒介-宿主传染病模型的全局稳定性[J].南京理工大学学报(自然科学版),2016,40(05):589.[doi:10.14177/j.cnki.32-1397n.2016.40.05.014]
 Liu Xiang,Qiu Zhipeng.Global stability analysis of delayed vector-host epidemic model[J].Journal of Nanjing University of Science and Technology,2016,40(06):589.[doi:10.14177/j.cnki.32-1397n.2016.40.05.014]
[7]黄甜甜,俞 浚,李千目.智能交通系统事件时间模式挖掘方法[J].南京理工大学学报(自然科学版),2018,42(05):571.[doi:10.14177/j.cnki.32-1397n.2018.42.05.010]
 Huang Tiantian,Yu Jun,Li Qianmu.Time pattern mining method for intelligent traffic system event[J].Journal of Nanjing University of Science and Technology,2018,42(06):571.[doi:10.14177/j.cnki.32-1397n.2018.42.05.010]

备注/Memo

备注/Memo:
收稿日期:2018-03-11 修回日期:2018-04-29
基金项目:国家自然科学基金(61773181); 安徽省高校优秀青年人才支持计划(gxyqZD2018044)
作者简介:张子振(1982-),男,博士,副教授,主要研究方向:时滞动力系统,E-mail:zzzhaida@163.com。
引文格式:张子振,储煜桂. 一类具有阶段结构的时滞生态流行病模型周期解[J]. 南京理工大学学报,2018,42(6):756-762.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2018-12-30