[1]邹上元,刘海瑞,蒋延杰,等.六维微重力模拟平台构型参数的多目标优化[J].南京理工大学学报(自然科学版),2019,43(02):147.[doi:10.14177/j.cnki.32-1397n.2019.43.02.004]
 Zou Shangyuan,Liu Hairui,Jiang Yanjie,et al.Multi-objective optimization of configuration parameter forsix dimensional microgravity simulation platform[J].Journal of Nanjing University of Science and Technology,2019,43(02):147.[doi:10.14177/j.cnki.32-1397n.2019.43.02.004]
点击复制

六维微重力模拟平台构型参数的多目标优化()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年02期
页码:
147
栏目:
出版日期:
2019-04-26

文章信息/Info

Title:
Multi-objective optimization of configuration parameter forsix dimensional microgravity simulation platform
文章编号:
1005-9830(2019)02-0147-07
作者:
邹上元1刘海瑞2蒋延杰3刘艳梨23吴洪涛3
江苏安全技术职业学院 1.汽车工程系; 2.电气工程系,江苏 徐州 221011; 3.南京航空航天大学 机电学院,江苏 南京 210016
Author(s):
Zou Shangyuan1Liu Hairui2Jiang Yanjie3Liu Yanli<sup>23Wu Hongtao3
1. Department of Automotive Engineering; 2. Department of Electrical Engineering,Jiangsu College of Safety Technology,Xuzhou 221011,China; 3. College of MechanicalEngineering,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China
关键词:
微重力模拟平台 构型参数 多目标优化 NSGA-2
Keywords:
microgravity simulation platform configuration parameters multi-objective optimization NSGA-2
分类号:
TH112
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.004
摘要:
针对并联机构等比例缩放后具有相同的性能指标,以及性能指标受量纲选择影响的问题,该文采用特征长度方法对雅克比矩阵进行无量纲化处理,通过分析影响构型参数优化的6个设计变量并对其进行简化,确定了其中2个为多目标优化最终变量。采用多目标优化算法NSGA-2对工作空间内切球半径、全局灵巧度和全局负载能力指数3个性能指标求解一组Pareto最优解集,在保证基本工作空间的前提下,从中选取一组符合工程的最优解。该方法比传统的单目标优化方法更适合工程实际应用。
Abstract:
In order to solve the problems that the parallel mechanism has the same performance after the same proportion zoom and the performance index is related with the dimension selection,the Jacobian matrix is dealt with dimensionless by using the characteristic length method to ensure the continued optimization of the configuration parameters. By analyzing the impact of 6 design variables on the configuration parameter optimization and determining the 2 of 6 variables as the final multi-objective optimization variables,a set of optimal Pareto solutions is gotten and among them a group of optimal solution in accordance with the engineering is obtained under the premise that the workspace size can be obtained by the multi-objective NSGA-2 optimization algorithm for the 3 performance indexes of workspace inradius,global dexterity and global load capacity index. All the results show that the NSGA-2 method is more valuable for practical engineering than the traditional single objective optimization method.

参考文献/References:

[1] Merlet J P. Optimal design of robots[C]//Proceedings of Robotics:Science and Systems. Cambridge,US:IEEE,2005:8-11.
[2]Angeles J,Park F C. Performance evaluation and design criteria(Springer Handbook of Robotics)[M]. Berlin Heidelberg,Germany:Springer,2008:229-244.
[3]Gon?alves R S,Carvalho J C M,Lobato F S. Workspace analysis of a parallel manipulator using multi-objective optimization and bio-inspired methods[C]//International Symposium on Multibody Systems and Mechatronics. Florianó-Polis,Brazil:Springer,2017:107-115.
[4]Ma O,Angeles J. Optimum architecture design of platform manipulators[C]//The fifth International Conference on Advanced Robotics. Pisa,Italy:IEEE,1991:1130-1135.
[5]Kim S G,Ryu J. New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators[J]. IEEE Transactions on Robotics and Automation,2003,19(4):731-737.
[6]Merlet J P. Jacobian,manipulability,condition number,and accuracy of parallel robots[J]. Journal of Mechanical Design,2006,128(1):199-206.
[7]Yoon J,Ryu J. Design,fabrication,and evaluation of a new haptic device using a parallel mechanism[J]. IEEE/ASME Transactions on Mechatronics,2001,6(3):221-233.
[8]Khan S,Andersson K,Wikander J. Jacobian matrix normalization-A comparison of different approaches in the context of multi-objective optimization of 6-DOF haptic devices[J]. Journal of Intelligent & Robotic Systems,2015,79(1):87-100.
[9]Wang H,Zhang L,Chen G,et al. Parameter optimization of heavy-load parallel manipulator by introducing stiffness distribution evaluation index[J]. Mechanism & Machine Theory,2017,108:244-259.
[10]Yang X,Wu H,Li Y,et al. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform[J]. Mechanism and Machine Theory,2017,117:244-252.
[11]Yang X,Wu H,Li Y,et al. Dynamic isotropic design and decentralized active control of a six-DOF micro-vibration isolator lying on two rings for space systems[C]//The 24th International Congress on Sound and Vibration.London,UK:ICSV,2017.
[12]Su Y X,Duan B Y,Zheng C H. Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope[J]. Mechatronics,2001,11(7):821-835.
[13]Zheng Y,Yao Y. Kinematic optimal design of 6-UPS parallel manipulator[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation. Niagara Fall,Canada:IEEE,2006:2341-2345.
[14]Lara-molina F A,Rosario J M,Dumur D. Multi-objective optimization of Stewart-Gough manipulator using global indices[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mecha-tronics(AIM). Budapest,Hungary:IEEE,2011:79-85.
[15]Lou Y,Liu G,Li Z. Randomized optimal design of parallel manipulators[J]. IEEE Transactions on Automation Science & Engineering,2008,5(2):223-233.
[16]Lou Y,Liu G,Chen N,et al. Optimal design of parallel manipulators for maximum effective regular workspace[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,Canada:IEEE,2005:795-800.
[17]Vulliez M,Zeghloul S. Multi-objective design optimization of the delthaptic,a new 6-DOF haptic device[C]//IEEE,International Conference on Industrial Informatics. Poitiers,France:IEEE,2017:248-253.
[18]Wang R,Zhang X. Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective[J]. Mechanism & Machine Theory,2017,112:61-83.
[19]Khan S. Multi-objective optimal design of a 6-DOF haptic device based on Jacobian normalization[J]. IEEE Transactions on Robotics and Automation,2012,31(4):823-834.
[20]刘国军,郑淑涛,刘小初,等. 采用进化算法的Gough-Stewart平台优化设计[J]. 哈尔滨工业大学学报,2013,45(3):36-44.
Liu Guojun,Zheng Shutao,Liu Xiaochu,et al. Optimal design of the Gough-Stewart platform using evolutionary algorithms[J]. Journal of Harbin Institute of Technology,2013,45(3):36-44.
[21]张琦,朱春生,冉红亮,等. 基于NSGA-Ⅱ的测试性指标分配方法[J]. 南京理工大学学报,2012,36(4):650-655.
Zhang Qi,Zhu Chunsheng,Ran Hong1iang,et al. Testability index distribution method based on NSGA-Ⅱ algorithm[J]. Journal of Nanjing University of Science and Technology,2012,36(4):650-655.

备注/Memo

备注/Memo:
收稿日期:2017-10-20 修回日期:2017-12-15
基金项目:江苏省高等学校自然科学研究项目(17KJB460003); 国家自然科学基金(51375230; 51705243); 江苏省自然科学基金(BK20170783; BK20170315)
作者简介:邹上元(1982-),男,硕士,讲师,主要研究方向:串、并联机器人及其控制技术,E-mail:mezousy@126.com; 通讯作者:吴洪涛(1962-),男,博士,教授,主要研究方向:机械多体系统理论与应用、机器人与并联运动机器,E-mail:mehtwu@126.com。
引文格式:邹上元,刘海瑞,蒋延杰,等. 六维微重力模拟平台构型参数的多目标优化[J]. 南京理工大学学报,2019,43(2):147-153.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-04-26