[1]陈酉明,宋晓宁,於东军.基于分块加权LBP向量和解析字典的协同表达分类[J].南京理工大学学报(自然科学版),2019,43(02):170.[doi:10.14177/j.cnki.32-1397n.2019.43.02.008]
 Chen Youming,Song Xiaoning,Yu Dongjun.Collaborative representation based classification based on weightedblock-based LBP histogram vector and analytic dictionary[J].Journal of Nanjing University of Science and Technology,2019,43(02):170.[doi:10.14177/j.cnki.32-1397n.2019.43.02.008]
点击复制

基于分块加权LBP向量和解析字典的协同表达分类()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年02期
页码:
170
栏目:
出版日期:
2019-04-26

文章信息/Info

Title:
Collaborative representation based classification based on weightedblock-based LBP histogram vector and analytic dictionary
文章编号:
1005-9830(2019)02-0170-07
作者:
陈酉明1宋晓宁1於东军2
1.江南大学 物联网工程学院,江苏 无锡 214122; 2.南京理工大学 计算机科学与工程学院,江苏 南京 210094
Author(s):
Chen Youming1Song Xiaoning1Yu Dongjun2
1.School of IoT Engineering,Jiangnan University,Wuxi 214122,China; 2.School of ComputerScience and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
协同表达 字典学习 局部二值特征 人脸分类
Keywords:
collaborative representation dictionary learning local binary pattern face classification
分类号:
TP391
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.008
摘要:
传统协同表达分类(CRC)算法因直接使用原始样本构造非传统字典,容易受到样本维度、光照和姿态变化等因素的影响。该文在协同表达框架基础上,提出了一种新的利用分块加权局部二值特征(LBP)直方图向量构造解析字典的协同表达人脸分类方法。首先通过分块加权方法优化LBP算子提取的纹理特征,然后采用解析字典学习方法将样本数据投影到稀疏系数空间,并使用协同表达方法重构测试样本,完成样本分类。与已有算法相比,该文算法的实验结果较好。ORL和LFW数据库上的实验结果证明了该文方法的有效性。
Abstract:
The traditional collaborative representation based classification(CRC)algorithms using original samples directly to construct an untraditional dictionary may get into some troubles including curse of dimensionality,variations in illumination and appearance. In this paper,a new face classification method based on CRC is proposed by using a set of the weighted block-based local binary pattern(LBP)histogram vectors to construct an analytic dictionary. A block weighted method is presented to optimize the texture features extracted from the LBP. Secondly,the samples are projected into a sparse coefficient space,which is constructed by an analytic dictionary model. The final goal is to perform the robust face classification using the proposed hybrid method. Experimental results conducted on the ORL and the LFW face databases demonstrate that the proposed method has the desirable classification performance.

参考文献/References:

[1] Ding C,Tao D. Trunk-branch ensemble convolutional neural networks for video-based face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):1002-1014.
[2]杨静宇,金忠,郭跃飞. 人脸图像有效鉴别特征抽取与识别[J]. 南京理工大学学报,2000,24(3):193-198.
Yang Jingyu,Jin Zhong,Guo Yuefei. Efficient discriminant feature extraction and recognition of face images[J]. Journal of Nanjing University of Science and Technology,2000,24(3):193-198.
[3]邹雪城,刘尹,邹连英,等. 改进的鉴别稀疏保持投影人脸识别算法[J]. 华中科技大学学报(自然科学版),2018,46(1):53-57.
Zou Xuecheng,Liu Yin,Zou Lianying,et al. Improved discriminant sparseity preserving projecting algorithm for face recognition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(1):53-57.
[4]孔英会,尹紫薇,车辚辚. 基于稀疏学习与显著性的人脸识别方法研究[J]. 计算机工程,2018,44(2):271-276.
Kong Yinghui,Yin Ziwei,Che Linlin. Research on face recognition method based on sparse learning and significance[J]. Computer Engineering,2018,44(2):271-276.
[5]Naseem I,Togneri R,Bennamoun M. Linear regression for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):2106-2112.
[6]Wright J,Ma Y,Mairal J,et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE,2010,98(6):1031-1044.
[7]Gao Y,Ma J,Yuille A L. Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples[J]. IEEE Transactions on Image Processing,2017,26(5):2545-2560.
[8]Zhang H,Patel V M. Sparse representation-based open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1690-1696.
[9]Zhang L,Yang M,Feng X,et al. Collaborative representation based classification for face recognition[J]. arXiv Preprint arXiv,2012:1204.2358.
[10]Deng W,Hu J,Guo J. Extended SRC:Undersampled face recognition via intraclass variant dictionary[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1864-1870.
[11]Xu Y,Zhu X,Li Z,et al. Using the original and‘symmetrical face’training samples to perform representation based two-step face recognition[J]. Pattern Recognition,2013,46(4):1151-1158.
[12]Rubinstein R,Peleg T,Elad M. Analysis K-SVD:A dictionary-learning algorithm for the analysis sparse model[J]. IEEE Transactions on Signal Processing,2013,61(3):661-677.
[13]Rubinstein R,Faktor T,Elad M. K-SVD dictionary-learning for the analysis sparse model[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Kyoto,Japan:IEEE,2012:5405-5408.
[14]Wang J,Guo Y,Guo J,et al. Synthesis linear classifier based analysis dictionary learning for pattern classification[J]. Neurocomputing,2017,238:103-113.
[15]Zhang L,Chu R,Xiang S,et al. Face detection based on multi-block LBP representation[C]//International Conference on Biometrics. Berlin,Heidelberg,Germany:Springer,2007:11-18.
[16]Zhang L,Yang M,Feng X. Sparse representation or collaborative representation:Which helps face recognition?[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV). Bacelona,Spain:IEEE,2011:471-478.

相似文献/References:

[1]周晓雨,余博思,丁恩杰.基于稀疏表示和低秩逼近的自适应异常事件 检测算法[J].南京理工大学学报(自然科学版),2016,40(06):666.[doi:10.14177/j.cnki.32-1397n.2016.40.06.005]
 Zhou Xiaoyu,Yu Bosi,Ding Enjie.Adaptive abnormal event detection algorithm based on sparse representation and low rank approximation[J].Journal of Nanjing University of Science and Technology,2016,40(02):666.[doi:10.14177/j.cnki.32-1397n.2016.40.06.005]
[2]时中荣,王 胜,刘传才.基于L2,p矩阵范数稀疏表示的图像分类方法[J].南京理工大学学报(自然科学版),2017,41(01):80.[doi:10.14177/j.cnki.32-1397n.2017.41.01.011]
 Shi Zhongrong,Wang Sheng,Liu Chuancai.Sparse representation via L2,p norm for image classification[J].Journal of Nanjing University of Science and Technology,2017,41(02):80.[doi:10.14177/j.cnki.32-1397n.2017.41.01.011]
[3]封 磊,孙怀江.结合局部稀疏性和非局部相似性的盲压缩感知方法[J].南京理工大学学报(自然科学版),2017,41(04):399.[doi:10.14177/j.cnki.32-1397n.2017.41.04.001]
 Feng Lei,Sun Huaijiang.Blind compressive sensing method via local sparsity and nonlocal similarity[J].Journal of Nanjing University of Science and Technology,2017,41(02):399.[doi:10.14177/j.cnki.32-1397n.2017.41.04.001]

备注/Memo

备注/Memo:
收稿日期:2017-12-06 修回日期:2018-03-21
基金项目:国家自然科学基金(61876072); 国家重点研发计划子课题(2017YFC1601800); 中国博士后科学基金(2018T110441); 江苏省自然科学基金(BK20161135); 江苏省“六大人才高峰”高层次人才项目(XYDXX-012)
作者简介:陈酉明(1993-),男,硕士生,主要研究方向:人工智能与模式识别,E-mail:1581707351@qq.com; 通讯作者:宋晓宁(1975-),男,博士,副教授,主要研究方向:人工智能与模式识别,E-mail:x.song@jiangnan.edu.cn。
引文格式:陈酉明,宋晓宁,於东军. 基于分块加权LBP向量和解析字典的协同表达分类[J]. 南京理工大学学报,2019,43(2):170-176.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-04-26