[1]王若聆,李 军,莫宗来.弱应变光纤光栅传感器匹配光栅解调方法[J].南京理工大学学报(自然科学版),2019,43(02):224.[doi:10.14177/j.cnki.32-1397n.2019.43.02.015]
 Wang Ruoling,Li Jun,Mo Zonglai.Study on matched grating demodulation of weakstrain fiber grating sensor[J].Journal of Nanjing University of Science and Technology,2019,43(02):224.[doi:10.14177/j.cnki.32-1397n.2019.43.02.015]
点击复制

弱应变光纤光栅传感器匹配光栅解调方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年02期
页码:
224
栏目:
出版日期:
2019-04-26

文章信息/Info

Title:
Study on matched grating demodulation of weakstrain fiber grating sensor
文章编号:
1005-9830(2019)02-0224-06
作者:
王若聆李 军莫宗来
南京理工大学 机械工程学院,江苏 南京 210094
Author(s):
Wang RuolingLi JunMo Zonglai
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
匹配光栅 弱应变 光纤光栅传感器 解调过程
Keywords:
matched grating weak strain fiber grating sensors demodulation process
分类号:
TP212; TN247
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.015
摘要:
基于弱反射光纤布拉格光栅应变传感器,建立了光栅反射光谱仿真模型。分析了光纤光栅的长度、周期和排列顺序对光栅反射率的影响,发现光栅的最大反射率随光栅长度和调制深度的增大而变大; 而光谱宽度受光栅长度变化的影响较大,光栅长度越小,光谱宽度越大。弱反射光栅阵列的峰值反射率与光栅位置有关,受多重反射影响,越下游的传感光栅,峰值反射率越小。通过分析解调过程中的反射光谱,得到了传感器所受应变与输出光强的函数关系。
Abstract:
Based on the strain sensor of weak reflection fiber Bragg grating,the model of grating reflection spectrum is established,and the influence of grating length,period and arrangement order on the grating reflectivity is analyzed. It is found that the maximum reflectivity of grating increases with the increase of grating length and modulation depth,while the spectral width is greatly affected by the change of grating length:the smaller the grating length,the larger the spectral width. The peak reflectivity of the weak reflection grating array is related to the position of the grating. Being affected by multiple reflections,the lower the sensor grating,the smaller the peak reflectivity. By analyzing the reflection spectra in the demodulation process,the functional relationship between the strain of the sensor and the output light intensity is obtained.

参考文献/References:

[1] Albert J,Hill K O,Malo B,et al. Maskless writing of submicrometer gratings in fused silica by focused ion beam implantation and differential wet etching[J]. Applied Physics Letters,1993,63(17):2309-2311.
[2]姜德生,何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光,2002,13(4):420-430.
Jiang Desheng,He Wei. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser,2002,13(4):420-430.
[3]胡志新,张桂莲,张陵,等. 基于薄壁应变筒的光纤布拉格光栅压力传感器[J]. 南京理工大学学报,2004,28(3):277-280.
Hu Zhixin,Zhang Guilian,Zhang Ling,et al. Fiber Bragg grating pressure sensors based on thin-wall strain canister[J]. Journal of Nanjing University of Science and Technology,2004,28(3):277-280.
[4]詹亚歌,蔡海文,向世清,等. 高分辨率光纤光栅温度传感器的研究[J]. 中国激光,2005,32(1):85-88.
Zhan Yage,Cai Haiwen,Xiang Shiqing,et al. Study on high resolution fiber Bragg grating temperature sensor[J]. Chinese Journal of Lasers,2005,32(1):85-88.
[5]昌学年,姚毅,闫玲. 位移传感器的发展及研究[J]. 计量与测试技术,2009,36(9):42-44.
Chang Xuenian,Yao Yi,Yan Ling. The development and investigation of displacement sensor[J]. Metrology & Measurement Technique,2009,36(9):42-44.
[6]Friebele E J. Fiber Bragg grating strain sensors:Presentand future applications in smart structures[J]. Optics & Photonics News,1998,9(8):33-37.
[7]张开宇,闫光,孟凡勇,等. 温度解耦增敏式光纤光栅应变传感器[J]. 光学精密工程,2018,26(6):1330-1337.
Zhang Kaiyu,Yan Guang,Meng Fanyong,et al. Temperature decoupling and high strain sensitivity fiber Bragg grating sensor[J]. Optics and Precision Engineering,2018,26(6):1330-1337.
[8]王艳霞,华灯鑫,吴宁强. 基于FBG-OTDR式光纤传感器的超多点应变测量技术研究[J]. 装备制造技术,2017(4):174-177.
Wang Yanxia,Hua Dengxin,Wu Ningqiang. Research on super-multi-point strain measurement technology of the FBG-OTDR-based fiber optic sensor[J]. Equipment Manufacturing Technology,2017(4):174-177.
[9]张立芳,王飞,张海丹,等. 基于可调谐激光吸收光谱技术的多条吸收谱线重建气体浓度二维分布的研究[J]. 光谱学与光谱分析,2016,36(11):3485-3491.
Zhang Lifang,Wang Fei,Zhang Haidan,et al. Research on the distribution of gas concentration of two-dimensional reconstruction based on tunable diode laser absorption spectroscopy with multispectral absorption[J]. Spectroscopy and Spectral Analysis,2016,36(11):3485-3491.
[10]Chandra V,Tiwari U,Das B. Dynamic signal sensing using fiber Bragg grating sensor and interferometric interrogation[C]//Workshop on Recent Advances in Photonics. Bangalore,India:IEEE,2017:1-4.
[11]翟玉锋,周喃,刘勇,等. 动态匹配光栅解调方法波长读出优化研究[J]. 光子学报,2007,36(6):1088-1091.
Zhai Yufeng,Zhou Nan,Liu Yong,et al. Study on optimization of output element of matched grating interrogation system[J]. Acta Photonica Sinica,2007,36(6):1088-1091.
[12]王梓. 基于弱反射光纤光栅的准分布式传感系统信息处理技术研究[D]. 武汉:华中科技大学光学与电子信息学院,2011.
[13]柯宇锷,郑羽,刘宇,等. 全同弱光纤光栅阵列反射信号仿真计算与分析[J]. 光通信研究,2015,41(4):39-41.
Ke Yué,Zheng Yu,Liu Yu,et al. Simulation and analysis of reflected signals in identical weak fiber Bragg grating arrays[J]. Study on Optical Communications,2015,41(4):39-41.

备注/Memo

备注/Memo:
收稿日期:2018-10-17 修回日期:2018-11-06
作者简介:王若聆(1993-),女,硕士生,主要研究方向:光纤光栅传感器,E-mail:542351653@qq.com; 通讯作者:李军(1965-),男,教授,主要研究方向:火箭炮系统设计,E-mail:lijunly@mail.njust.edu.cn; 莫宗来(1985-),男,博士,讲师,主要研究方向:光纤传感器,E-mail:z.mo@njust.edu.cn。
引文格式:王若聆,李军,莫宗来. 弱应变光纤光栅传感器匹配光栅解调方法[J]. 南京理工大学学报,2019,43(2):224-229.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-04-26