[1]孙 泓,沈煜年,陈 涛.发射环境下高聚物黏结炸药的瞬态响应及裂纹扩展[J].南京理工大学学报(自然科学版),2019,43(02):230.[doi:10.14177/j.cnki.32-1397n.2019.43.02.016]
 Sun Hong,Shen Yunian,Chen Tao.Transient response and crack propagation of polymerbonded explosive under launching environment[J].Journal of Nanjing University of Science and Technology,2019,43(02):230.[doi:10.14177/j.cnki.32-1397n.2019.43.02.016]
点击复制

发射环境下高聚物黏结炸药的瞬态响应及裂纹扩展()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年02期
页码:
230
栏目:
出版日期:
2019-04-26

文章信息/Info

Title:
Transient response and crack propagation of polymerbonded explosive under launching environment
文章编号:
1005-9830(2019)02-0230-07
作者:
孙 泓沈煜年陈 涛
南京理工大学 理学院,江苏 南京 210094
Author(s):
Sun HongShen YunianChen Tao
School of Science,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
发射环境 黏弹性统计裂纹模型 高聚物黏结炸药 力学响应 裂纹分布
Keywords:
launching environment viscoelastic-statistical crack model polymer bonded explosive dynamic response crack distribution
分类号:
O34; TJ5
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.016
摘要:
为了提供发射环境下含炸药弹体安全性评估所需的精确的炸药动力响应数据,该文提出了黏弹性统计裂纹本构模型,并用于数值计算冲击载荷作用下含裂纹黏弹性复合材料的瞬态响应。采用四阶龙格库塔法解耦常微分方程形式的本构方程。通过Fortran语言编制了相应的子模块,并将其嵌入非线性有限元计算程序,通过比较数值结果与实验结果验证了该文方法的正确性。数值结果表明,发射(冲击载荷作用)后110 μs时裂纹扩展已经稳定,此时高聚物黏结炸药(PBX)柱两端面的边缘位置和中心位置的等效应力大于其他位置,从而导致这些部位的平均裂纹半径大于其他各点。研究还发现,裂纹扩展速度低于应力波的传播速度,扰动点的应力达到峰值时该点裂纹半径才开始增大。
Abstract:
In order to provide accurate explosive dynamic response data for the safety evaluation of explosive projectiles under launching environment,the viscoelastic-statistical crack constitutive model is developed and applied to the numerical calculation of transient response of cracked viscoelastic composite under impact loading. The fourth order Runge-Kutta method is used to decouple the constitutive equations in the form of ordinary differential equations,the corresponding sub modules are compiled and embedded into the nonlinear finite element calculation program by the Fortran language. The correctness of the method is verified by comparing numerical results with the experimental data. The numerical results show that the crack growth is stable at 110 s after launching,and at this time the effective stress at the edge position and the center position of the two ends of the explosive column are greater than those at other places,consequently it leads to the average crack radius of these locations being larger than that of other parts. It is also found that the crack growth rate is lower than the propagation velocity of stress waves. The radius of crack begins to increase when the stress of a disturbance point reaches its peak value.

参考文献/References:

[1] Cheng L,Shi H,Chen R,et al. Dynamic mechanical behaviour and the statistical crack mechanics model for a polymer-bonded explosive[J]. Materiale Plastice,2014,51(4):363-369.
[2]王世英,胡焕性. B炸药装药发射安全性落锤模拟加载实验研究[J]. 爆炸与冲击,2003,23(2):275-278.
Wang Shiying,Hu Huanxing. Drop hammer simulation study on launch safety of composite B[J]. Explosion and Shock Waves,2003,23(2):275-278.
[3]常双君. 炸药装药质量对发射安全性的影响[J]. 中国安全科学学报,2004,14(11):76.Chang Shuangjun. Effect of charging quality on launching safety[J]. China Safety Science Journal,2004,14(11):76.
[4]陈涛,芮筱亭,凌剑,等. 发射药床动态挤压破碎模拟研究[J]. 南京理工大学学报,2006,30(4):467-471.
Chen Tao,Rui Xiaoting,Ling Jian,et al. Dynamic extrusion and fracture simulation of propellant charge bed[J]. Journal of Nanjing University of Science and Technology,2006,30(4):467-471.
[5]Peterson P,Fletcher M,Roemer E. Influence of pressing intensity on the microstructure of PBX 9501[J]. Journal of Energetic Materials,2003,21(4):247-260.
[6]王豪. 炸药装药发射安全性计算研究[D]. 江苏:南京理工大学机械工程学院,2011.
[7]王小峰,陶钢,丁贵鹏,等. 30mm小口径炮弹发射时炸药装药应变率及过载安全性分析[J]. 兵器装备工程学报,2017,38(10):9-14.
Wang Xiaofeng,Tao Gang,Ding Guipeng,et al. Analysis of strain rate and over-loading safety of explosive charge when 30 mm small-caliber shell are fired[J]. Journal of Ordnance Equipment Engineering,2017,38(10):9-14.
[8]Xiao Y,Sun Y,Li X,et al. Dynamic compressive properties of polymer bonded explosives under confining pressure[J]. Propellants Explosives Pyrotechnics,2017,42(8):873-882.
[9]Dienes J K. Impact initiation of explosives and propellants via statistical crack mechanics[J]. Journal of the Mechanics & Physics of Solids,2006,54(6):1237-1275.
[10]Dienes J K. Progress in statistcal crack mechanics:an approto initiation[C]//12th International Detonation Symposium. San Diego,US:JHU WSE Energetics Research Group,2002.
[11]Bennett J G. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of the Mechanics & Physics of Solids,1998,46(12):2303-2322.
[12]Xiao Y,Sun Y,Zhen Y,et al.Characterization,modeling and simulation of the impact damage for polymer bonded explosives[J]. International Journal of Impact Engineering,2017,103:149-158.
[13]孙宝平,段卓平,万经纶. 基于Visco-SCRAM模型的侵彻装药点火研究[J]. 爆炸与冲击,2015,35(5):689-695.
Sun Baoping,Duan Zhuoping,Wan Jinglun. Investigation on ignition of an explosive charge in a projectile during penetration based on visco-scram model[J]. Explosion and Shock Waves,2015,35(5):689-695.
[14]赵梓君,毕世华. BIC实验的数值模拟研究[J]. 北京理工大学学报,2015,35(6):556-559.
Zhao Zijun,Bi Shihua. Numerical simulation on ballistic impact chamber test[J]. Transactions of Beijing Institute of Technology,2015,35(6):556-559.
[15]Buechler M A,Luscher D J. A semi-plicit integration scheme for a combined viscoelastic-amage model of plastic bonded explosives[J]. International Journal for Numerical Methods in Engineering,2014,9(1):54-78.
[16]Evans A G. Slow crack growth in brittle materials under dynamic loading conditions[J]. International Journal of Fracture,1974,10(2):251-259.
[17]Freund L B. Dynamic Fracture Mechanics[M]. London,UK:Cambridge University Press,1990.
[18]富明慧,梁华力. 一种改进的精细-龙格库塔法[J]. 中山大学学报(自然科学版),2009,48(5):1-5.
Fu Minghui,Liang Huali. An improved precise Runge-Kutta integration[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2009,48(5):1-5.
[19]Asay B W,Funk D J,Henson B F,et al. Speckle photography during dynamic impact of an energetic material user laser induced fluorescence[J]. Journal of Applied Physics,1997,82(3):1093-1099.
[20]Strassburger E,Patel P,McCauley J W,et al. High-speed transmission shadow graphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact method[C]//Proceedings of the Twentythird International Symposium on Ballistics. Tarragona,Spain:International Ballistics Committee,2007.

备注/Memo

备注/Memo:
收稿日期:2018-04-24 修回日期:2018-09-11
基金项目:国家自然科学基金(11572157; 11302107)
作者简介:孙泓(1994-),男,硕士生,主要研究方向:固体力学,E-mail:1661272978@qq.com; 通讯作者:陈涛(1978-),男,博士,讲师,主要研究方向:兵器发射理论与技术,E-mail:S01080541@163.com。
引文格式:孙泓,沈煜年,陈涛.发射环境下高聚物黏结炸药的瞬态响应及裂纹扩展[J]. 南京理工大学学报,2019,43(2):230-236.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-04-26