[1]郭业才,王 超.基于支持向量机可控功率响应的MUSIC-DOA估计方法[J].南京理工大学学报(自然科学版),2019,43(02):237.[doi:10.14177/j.cnki.32-1397n.2019.43.02.017]
 Guo Yecai,Wang Chao.Research on MUSIC-DOA estimation method based onSVM steered response power[J].Journal of Nanjing University of Science and Technology,2019,43(02):237.[doi:10.14177/j.cnki.32-1397n.2019.43.02.017]
点击复制

基于支持向量机可控功率响应的MUSIC-DOA估计方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年02期
页码:
237
栏目:
出版日期:
2019-04-26

文章信息/Info

Title:
Research on MUSIC-DOA estimation method based onSVM steered response power
文章编号:
1005-9830(2019)02-0237-07
作者:
郭业才12王 超1
1.南京信息工程大学 江苏省气象探测与信息处理重点实验室,江苏 南京 210044; 2.江苏省大气环境与装备技术协同创新中心,江苏 南京 210044
Author(s):
Guo Yecai12Wang Chao1
1.Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science & Technology,Nanjing 210044,China; 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technol
关键词:
宽带信号 支持向量机 波达方位估计 可控功率响应
Keywords:
wideband signal support vector machine direction of arrival estimation steered response power
分类号:
TP391
DOI:
10.14177/j.cnki.32-1397n.2019.43.02.017
摘要:
针对MUSIC归一化算法在低信噪比时波达方位(DOA)估计性能下降的问题,提出了基于支持向量机(SVM)可控功率响应的MUSIC-DOA算法。该算法首先对宽带信号进行快速傅里叶变换,然后用MUSIC算法进行DOA估计,最后通过SVM对每个子带信号的DOA估计结果进行分类,选择分类后DOA估计结果较为准确的子带信号进行融合,得到宽带信号的DOA估计。该文方法有效解决了MUSIC归一化算法在低信噪比时定位精度不高的问题,提高了定位系统的稳定性。
Abstract:
Aiming at the problem that the performance of estimation of the traditional MUSIC algorithm on the direction of arrival(DOA)degrades under the low signal to noise ratio(SNR)or strong reverberation,the steered response power(SRP)MUSIC algorithm based on the support vector machine(SVM)is proposed here. Firstly,the proposed algorithm performs fast Fourier transform on the wideband signals,and then uses the MUSIC algorithm to estimate the DOA. Finally,results of the DOA estimation of the each sub-band signal are classified by using the SVM,and the more accurate sub-band signals are selected after the classification to make the fusion and to get the broadband signal DOA estimation. The method in this paper solves the problem that the MUSIC normalization algorithm has low precision under the low signal to noise ratio effectively,and improves the stability of the algorithm.

参考文献/References:

[1] Chen J C,Yao K,Tung T L,et al. Source localization and tracking of a wideband source using a randomly distributed beamforming sensor array[J]. International Journal of High Performance Computing Applications,2002,16(3):259-272.
[2]Huang Qinghua,Zhong Qiang,Zhuang Qilei. Source localization with minimum variance distortionless response for spherical microphone arrays[J]. Advances in Manu facturing,2011,15(1):21-25.
[3]Mennill D J,Battiston M,Wilson D R,et al. Field test of an affordable,portable,wireless microphone array for spatial monitoring of animal ecology and behaviour[J]. Methods in Ecology & Evolution,2012,3(4):704-712.
[4]Salvati D,Canazza S. Incident signal power comparison for localization of concurrent multiple acoustic sources[J]. The Scientific World Journal,2014(6):582397.
[5]Rowell C R,Fee D,Szuberla C A L,et al. Three-dimensional volcano-acoustic source localization at Karymsky Volcano,Kamchatka,Russia[J]. Journal of Volcanology & Geothermal Research,2014,283(15):101-115.
[6]Salvati D,Drioli C,Foresti G L. Incoherent frequency fusion for broadband steered response power algorithms in noisy environments[J]. IEEE Signal Processing Letters,2014,21(5):581-585.
[7]盛卫星,方大纲,杨正龙,等. 一般非综合孔径雷达方位超分辨研究[J]. 南京理工大学学报,2000,24(4):289-295.
Sheng Weixing,Fang Dagang,Yang Zhenglong,et al. Angular super-resolution for real aperture radars[J]. Journal of Nanjing University of Science and Technology,2000,24(4):289-295.
[8]Zue V W. Automatic speech recognition and understanding[M]. Boston,US:Massachusetts Institute of Technology,1990:185-200.
[9]Ribeiro F,Zhang C,Ba D E. Using reverberation to improve range and elevation discrimination for small array sound source localization[J]. IEEE Transactions on Audio Speech & Language Processing,2010,18(7):1781-1792.
[10]Salvati D,Canazza S,Rodà A. A sound localization based interface for real-time control of audio processing[C]//Proceedings of the 14th International Conference on Digital Audio Effects. Paris,France:The National Center for Scientific Research,2011:177-184.
[11]Salvati D,Canazza S. Adaptive time delay estimation using filter length constraints for source localization in reverberant acoustic environments[J]. IEEE Signal Processing Letters,2013,20(5):507-510.
[12]Li Y,Ho K C,Popescu M. A microphone array system for automatic fall detection[J]. IEEE Transactions on Biomedical Engineering,2012,59(5):1291-1301.
[13]Krim H,Viberg M. Two decades of array signal processing research:the parametric approach[J]. IEEE Signal Process Magazine,1996,13(4):67-94.
[14]谭颖,殷福亮,李细林. 改进的SRP-PHAT声源定位方法[J]. 电子与信息学报,2006,28(7):1223-1227.
Tan Ying,Yin Fuliang,Li Xilin. Sound localization method using modified SRP-PHAT algorithm[J]. Journal of Electronics & Information Technology,2006,28(7):1223-1227.
[15]张小飞. 阵列信号处理的理论和应用[M]. 北京:国防工业出版社,2010:78-83.
[16]余正涛,邹俊杰,赵兴,等. 基于主动学习的最小二乘支持向量机稀疏化[J]. 南京理工大学学报,2012,36(1):12-17.
Yu Zhengtao,Zou Junjie,Zhao Xing,et al. Sparseness of least squares support vector machines based on active learning[J]. Journal of Nanjing University of Science and Technology,2012,36(1):12-17.
[17]Salvati D,Drioli C,Foresti G L. A weighted MVDR beamformer based on SVM learning for sound source localization[J]. Pattern Recognition Letters,2016(84):15-21.
[18]Salvati D,Drioli C,Foresti G L. Frequency map selection using a RBFN-based classifier in the MVDR beamformer for speaker localization in reverberant rooms[C]//Proceedings of The 16th Annual Conference of the International Speech Communication Association. Dresden,Germany:Interspeech,2015:3298-3301.
[19]Platt J C. Saquential minimal optimization:A fast algorithm for training support vector machines[J]. Journal of Information Technology,1998,2(5):1-28.
[20]Dibiase J H,Silverman H F,Brandstein M S. Robust localization in reverberant rooms[J]. Micropone Arrays Signal Processing Techniques & Applications,2001(3):157-180.

相似文献/References:

[1]邓敏,韩玉启.基于支持向量机的大学财务困境预警模型[J].南京理工大学学报(自然科学版),2012,36(03):551.
 DENG Min,HAN Yu-qi.Financial Crisis Early Warning Model for Universities Based on Support Vector Machine[J].Journal of Nanjing University of Science and Technology,2012,36(02):551.
[2]张玉珍,何新,王建宇,等.一种基于SVM的高效球门检测方法[J].南京理工大学学报(自然科学版),2010,(01):13.
 ZHANG Yu-zhen,HE Xin,WANG Jian-yu,et al.Efficient Goal-mouth Detection Method Based on SVM[J].Journal of Nanjing University of Science and Technology,2010,(02):13.
[3]朱宁,冯志刚,王祁,等.基于小生境遗传算法的支持向量机分类器参数优化[J].南京理工大学学报(自然科学版),2009,(01):16.
 ZHU Ning,FENG Zhi-gang,WANG Qi.Parameter Optimization of Support Vector Machine for Classification Using Niche Genetic Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(02):16.
[4]栾英宏,李跃华.基于模糊支持向量机的一维距离像识别[J].南京理工大学学报(自然科学版),2009,(03):375.
 LUAN Ying-hong,LI Yue-hua.One-dimensional Range Profile Recognition Based on FSVM[J].Journal of Nanjing University of Science and Technology,2009,(02):375.
[5]张培林,等.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报(自然科学版),2009,(04):464.
 ZHANG Bei-lin,QIAN Lin-fang,CAO Jian-jun,et al.Parameter Optimization of Support Vector Machine Based on Ant Colony Optimization Algorithm[J].Journal of Nanjing University of Science and Technology,2009,(02):464.
[6]张琨,曹宏鑫,衷宜,等.网络入侵检测中一种新型SVM特征加权分类方法[J].南京理工大学学报(自然科学版),2008,(02):231.
 ZHANG Kun,CAO Hong-xin,ZHONG Yi,et al.New SVM Weighted Feature Classification Method in Network Intrusion Detection[J].Journal of Nanjing University of Science and Technology,2008,(02):231.
[7]冯志刚,王祁,徐涛,等.基于小波包和支持向量机的传感器故障诊断方法[J].南京理工大学学报(自然科学版),2008,(05):609.
 FENG Zhi-gang,WANG Qi,XU Tao,et al.Sensor Fault Diagnosis Based on Wavelet Packet and Support Vector Machines[J].Journal of Nanjing University of Science and Technology,2008,(02):609.
[8]杨静宇,魏兴国,孙怀江.一种快速SVM学习算法[J].南京理工大学学报(自然科学版),2003,(05):530.
 YangJingyu WeiXingguo SunHuaijiang.A Fast SVM Learning Algorithm[J].Journal of Nanjing University of Science and Technology,2003,(02):530.
[9]张 琨,等.一种基于SVM的网络入侵检测模型[J].南京理工大学学报(自然科学版),2007,(04):403.
 ZHANG Kun,CAO Hong-xin,LIU Feng-yu,et al.SVM-based Network Intrusion Detection Model[J].Journal of Nanjing University of Science and Technology,2007,(02):403.
[10]臧希喆,赵杰,蔡鹤皋,等.面向网络遥操作的多传感器集成手爪的设计[J].南京理工大学学报(自然科学版),2006,(01):38.
 ZANG Xi-zhe,ZHAO Jie,CAI He-gao.Design of Multisensory Gripper for Internet-based Teleoperation[J].Journal of Nanjing University of Science and Technology,2006,(02):38.

备注/Memo

备注/Memo:
收稿日期:2018-03-14 修回日期:2018-10-23
基金项目:国家自然科学基金(61673222; 61371131); 江苏省高校自然科学研究重大项目(13KJA510001); 江苏高校品牌专业建设项目(PPZY2015B134); 江苏省教育教学改革项目(2017JSJG168)
作者简介:郭业才(1962-),男,博士,教授,博士生导师,主要研究方向:水声信号处理,E-mail:guo-yecai@163.com。
引文格式:郭业才,王超. 基于支持向量机可控功率响应的MUSIC-DOA估计方法[J]. 南京理工大学学报,2019,43(2):237-243.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-04-26