[1]刘承婷,刘 钢,闫作秀.涡流工具中液滴受力分析与工具角度优化[J].南京理工大学学报(自然科学版),2019,43(04):462-467.[doi:10.14177/j.cnki.32-1397n.2019.43.04.012]
 Liu Chengting,Liu Gang,Yan Zuoxiu.Drop force analysis and tool angle optimization in eddy current tool[J].Journal of Nanjing University of Science and Technology,2019,43(04):462-467.[doi:10.14177/j.cnki.32-1397n.2019.43.04.012]
点击复制

涡流工具中液滴受力分析与工具角度优化()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年04期
页码:
462-467
栏目:
出版日期:
2019-08-24

文章信息/Info

Title:
Drop force analysis and tool angle optimization in eddy current tool
文章编号:
1005-9830(2019)04-0462-06
作者:
刘承婷刘 钢闫作秀
东北石油大学 石油工程学院,黑龙江 大庆 163318
Author(s):
Liu ChengtingLiu GangYan Zuoxiu
Petroleum Engineering Institute,Northeast Petroleum University,Daqing 163318,China
关键词:
涡流工具 运动方程 受力分析 排水采气 优化
Keywords:
eddy current tool equation of motion force analysis drainage and gas recovery optimization
分类号:
TE9
DOI:
10.14177/j.cnki.32-1397n.2019.43.04.012
摘要:
涡流工具可以改变井下流场流态,是一种新型排水采气技术。螺旋角度对井下流场状态起决定作用。安装涡流工具的井筒流动与常规气井不同,为此对采气井筒中液滴进行受力分析,分析液滴所受到的重力、浮力、离心力、Saffman力、Magnus力等典型力的作用效果并探讨力的成因,建立液滴运动方程,在对不同力的量级进行比较后,对方程进行简化,最终求解得到最佳螺旋角的数学公式。最后采用数值模拟和现场生产数据对比的方式,验证求得数学模型的可靠性。
Abstract:
The eddy current tool can change the flow field of the downhole flow field and is a new type of drainage and gas recovery technology. The helix angle determines the status of the downhole flow field. The well bore flow for installation of the eddy current tool is different from that for conventional gas well. For this reason,the forces acting on droplets in gas production well bore are applied. Then the effects of gravity,buoyancy,centrifugal force,Saffman force,Magnus force and other typical forces on the droplet are analyzed and the causes of the formation of the forces are discussed. Equations of droplet motion are established. After comparing the magnitudes of different forces,the equation is simplified and the mathematical formula of the optimum helix angle is obtained. Finally,the reliability of the mathematical model is verified by comparing the numerical simulation of field production data.

参考文献/References:

[1] 叶长青,熊杰,康琳洁,等. 川渝气区排水采气工具研制新进展[J]. 天然气工业,2015,35(2):54-58.
Ye Changqing,Xiong Jie,Kang Linjie,et al. New progress in the R&D of water drainage gas recovery tools in Sichuan and Chongqing gas zones[J]. Natural Gas Industry,2015,35(2):54-58.
[2]杨涛,余淑明,杨桦,等. 气井涡流排水采气新技术及其应用[J]. 天然气工业,2012,32(8):63-66.
Yang Tao,Yu Shuming,Yang Hua,et al. A new technology of vortex dewatering gas recovery in gas wells and its application[J]. Natural Gas Industry,2012,32(8):63-66.
[3]Ali A J. Investigation of flow modifying tools for the continuous unloading of wet-gas wells[D]. College Station:Texas A&M University,2003.
[4]Mingaleeva G R. On the mechanism of a helical motion of fluids in regions of sharp path bending[J]. Technical Physics Letters,2002,28(8):657-659.
[5]杨旭东,李丽,张军. 井下涡流工具排水采气机理研究[J]. 石油机械,2015,43(5):81-86.
Yang Xudong,Li Li,Zhang Jun. Study on drainage and gas recovery mechanism of downhole eddy tools[J]. Petroleum Machinery,2015,43(5):81-86.
[6]徐建宁,邵乐,梁慧荣,等. 基于正交实验的涡流排水采气影响因素分析[J]. 石油矿场机械,2014,43(11):52-56.Xu Jianning,Shao Le,Liang Huirong,et al. Analysis of influencing factors on eddy drainage gas recovery based on orthogonal experiment[J]. Petroleum Field Machinery,2014,43(11):52-56.
[7]Surendra M,Falcone G,Teodoriu C. Investigation of swirl flows applied to the oil and gas industry[J]. SPE Projects,Facilities & Construction,2009,4(1):1-6.
[8]Turner R G,Hubbard M G,Dulker A E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. Journal of Petroleum Technology,1969,21(11):1475-1482.
[9]李雪斌,袁惠新,曹仲文. 旋流场内分散相颗粒的受力特性分析[J]. 金属矿山,2007(12):101-103.
Li Xuebin,Yuan Huixin,Cao Zhongwen. Charac-teristics analysis of forces on dispersal particles in swirling flow field[J]. Metal Mine,2007(12):101-103.
[10]郭烈锦. 两相与多相流动力学[M]. 西安:西安交通大学出版社,2002.
[11]曹仲文,袁惠新. 旋流器中分散相颗粒动力学分析[J]. 食品与机械,2006,22(5):74-76.Cao Zhongwen,Yuan Huixin. Dynamic analysis of dispersed particles in the swirling flow fleld[J]. Food & Machinery,2006,22(5):74-76.
[12]Rubinow S I,Keller J B. The transverse force on a spinning sphere moving in a viscous fluid[J]. Journal of Fluid Mechanics,1961,11(3):447-459.
[13]Saffman P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics,1965,22(2):385-400.
[14]刘承婷,刘钢,张维薇. 脉冲周期对射流泵引射液体量的影响[J]. 南京理工大学学报,2018,42(5):609-614,621.
Liu Chengting,Liu Gang,Zhang Weiwei. Effect of pulse period on the amount of jet pumped by jet pump[J]. Journal of Nanjing University of Science and Technology,2018,42(5):609-614,621.
[15]朱诚,郑林. 基于格子Boltzmann方法的热毛细对流数值模拟研究[J]. 南京理工大学学报,2017,41(6):773-778.
Zhu Cheng,Zheng Lin. Numerical simulation of thermocapillary convection based on lattice Boltzmann method[J]. Journal of Nanjing University of Science and Technology,2017,41(6):773-778.

相似文献/References:

[1]关英姿,杨大明.航天器对接过程的动力学建模[J].南京理工大学学报(自然科学版),2001,(01):6.
 GuanYingzi YangDaming.Dynamic Modeling of Spacecraft Docking Process[J].Journal of Nanjing University of Science and Technology,2001,(04):6.
[2]王梦林.考虑双重后座的前冲式自动武器的运动分析[J].南京理工大学学报(自然科学版),1981,(02):81.
[3]孙勇久,徐奉新.直齿销式无返回力矩调速器振动理论[J].南京理工大学学报(自然科学版),1981,(04):35.
[4]徐明友.旋转火箭弹一般性运动方程组[J].南京理工大学学报(自然科学版),1979,(03):171.

备注/Memo

备注/Memo:
收稿日期:2018-07-14 修回日期:2018-12-14
基金项目:中国石油科技创新基金项目(2018D-5007-0206)
作者简介:刘承婷(1978-),女,副教授,博士,主要研究方向:多项流体力学理论及工程应用,E-mail:435276627@qq.com; 通讯作者:刘钢(1994-),男,硕士,主要研究方向:复杂流体流动与数值模拟,E-mail:605521991@qq.com。
引文格式:刘承婷,刘钢,闫作秀. 涡流工具中液滴受力分析与工具角度优化[J]. 南京理工大学学报,2019,43(4):462-467.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-09-30