[1]方 宇,高 磊,刘忠慧,等.基于三支决策的广义代价敏感近似属性约简[J].南京理工大学学报(自然科学版),2019,43(04):481-488.[doi:10.14177/j.cnki.32-1397n.2019.43.04.015]
 Fang Yu,Gao Lei,Liu Zhonghui,et al.Generalized cost-sensitive approximate attributereduction based on three-way decisions[J].Journal of Nanjing University of Science and Technology,2019,43(04):481-488.[doi:10.14177/j.cnki.32-1397n.2019.43.04.015]
点击复制

基于三支决策的广义代价敏感近似属性约简()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年04期
页码:
481-488
栏目:
出版日期:
2019-08-24

文章信息/Info

Title:
Generalized cost-sensitive approximate attributereduction based on three-way decisions
文章编号:
1005-9830(2019)04-0481-08
作者:
方 宇1高 磊1刘忠慧1杨 新2
1.西南石油大学 计算机科学学院 四川 成都 610500; 2.西南财经大学 经济信息工程学院,四川 成都 611130
Author(s):
Fang Yu1Gao Lei1Liu Zhonghui1Yang Xin2
1.School of Computer Science,Southwest Petroleum University,Chengdu 610500,China; 2. School of Economic Information Engineering,Southwestern University of Finance andEconomics,Chengdu 611130,China
关键词:
属性约简 代价敏感学习(不)可分辨能力 粒计算 三支决策
Keywords:
attribute reduction cost-sensitive learning(in)discernibility granular computing three-way decisions
分类号:
TP181
DOI:
10.14177/j.cnki.32-1397n.2019.43.04.015
摘要:
在粗糙集领域,属性约简的首要任务是在保持原有数据相关特性的前提下,获取一个最小的属性子集。代价敏感学习的目标旨在最小化各类代价。而近似属性约简的意义在于让决策者能够权衡代价承受能力和知识发现的程度。本文在定性和定量的标准下提出了代价敏感近似属性约简的问题; 定性标准指不可分辨能力,定量标准指近似参数ε和代价基于三支决策和可分辨矩阵,提出了解决代价敏感近似属性约简问题的框架:首先,定义了属性子集的质量函数,该函数解释了多粒度结构; 其次,通过考察属性重要度,提出了性价比指标的适应函数; 进而利用提出的适应函数和三支决策中的(α,β)阈值对三分属性集合; 最后,设计了删除策略和添加策略的代价敏感属性约简算法。从实验结果分析上验证了算法的有效性,体现了提出的问题和理论框架具有更广义的解释和适应性。
Abstract:
In the research spectrum of rough sets,the primary task of attribute reduction is to obtain a minimum subset of attribute set while maintaining the relevant features of the original data. The goal of cost-sensitive learning is to minimize the various costs. The significance of approximate attribute reduction is to enable decision makers to leverage the cost tolerance and the grade of knowledge discovery. This paper proposes a cost-sensitive approximate attribute reduction problem with both qualitative and quantitative criteria. The qualitative criteria refers to(in)discernibility,and the quantitative criteria refers to approximate parameters ε and costs. Based on the three-way decisions and discernible matrix,this paper portrays a framework to solve the problem of cost-sensitive approximate attribute reduction. First,we define the quality function of attribute set which explains the multi-granularity structure. Second,we propose a‘cost-performance index’fitness function to evaluate the importance of attribute,then the proposed fitness function and (α,β) thresholds pair with three-way decisions are applied to tri-partition the attribute sets. Finally,we design the two algorithms(deletion-based and addition-based)to tackle the reduction problem. The validity of the algorithms is verified by the experimental result analysis,which proves that our framework has broader adaptability and applicability.

参考文献/References:

[1] Pawlak Z. Rough Sets:Theoretical aspects of reasoning about data[M]. Part of the Theory and Decision Library Book Series:Netherlands:Springer Science & Business Media,2012:33-44.
[2]Skowron A,Rauszer C. The discernibility matrices and functions in information systems[M]. Sowiński R.(eds)Intelligent Decision Support. Theory and Decision Library(Series D:System Theory,Knowledge Engineering and Problem Solving),vol 11. Dordrecht:Springer,1992:331-362.
[3]Dai Jianhua,Hu Hu,Wu Weizhi,et al. Maximal discernibility pairs based approach to attribute reduction in fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2018,26(4):2174-2187.
[4]Miao Duoqian,Zhao Yan,Yao Yiyu,et al. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model[J]. Information Sciences,2009,179(24):4140-4150.
[5]Min Fan,He Huaping,Qian Yuhua,et al. Test-cost-sensitive attribute reduction[J]. Information Sciences,2011,181(22):4928-4942.
[6]Fang Yu,Min Fan. Cost-sensitive approximate attribute reduction with three-way decisions[J]. International Journal of Approximate Reasoning,2019,104:148-165.
[7]Yao Yiyu,Wong S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies,1992,37(6):793-809.
[8]王宇,杨志荣,杨习贝,决策粗糙集属性约简:一种局部视角方法[J]. 南京理工大学学报,2003,27(5):630-635.
Wang Yu,Yang Zhirong,Yang Xibei. Local attribute reduction approach based on decision-theoretic rough set[J]. Journal of Nanjing University of Science and Technology,2003,27(5):630-635.
[9]Ziarko W. Probabilistic approach to rough sets[J]. International Journal of Approximate Reasoning,2008,49(2):272-284.
[10]Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Sciences,1993,46(1):39-59.
[11]Zhang Benwen,Min Fan,Ciucci D. Representative-based classification through covering-based neighborhood rough sets[J]. Applied Intelligence,2015,43(4):840-854.
[12]Sl zak D. Normalized decision functions and measures for inconsistent decision tables analysis[J]. Fundamenta Informaticae,2000,44(3):291-319.
[13]方宇,闵帆,刘忠慧,等. 序贯三支决策的代价敏感分类方法[J]. 南京大学学报(自然科学),2018,54(1):148-156.
Fang Yu,Min Fan,Liu Zhonghui,et al. Sequential three-way decisions based on cost-sensitive approach to classification[J]. Journal of Nanjing University(Nature Science),2018,54(1):148-156
[14]杨新,李天瑞,刘盾,等. 基于决策粗糙集的广义序贯三支决策方法[J]. 计算机科学,2018,45(10):8-12,27.
Yang Xin,Li Tianrui,Liu Dun,et al. Generalized sequential three-way decisions approach based on decision-theoretic rough sets[J]. Computer Science,2018,45(10):8-12,27.
[15]Yao Yiyu,Zhao Yan. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences,2008,178(17):3356-3373.
[16]Yao Yiyu,Zhao Yan. Discernibility matrix simplification for constructing attribute reducts[J]. Information Sciences,2009,179(7):867-882.
[17]Slzak D. Approximate reducts in decision tables[C]//IMPU-96 Information Process and Management of Uncertainty in Knowledge Based Systems(Vol.2). Granada,Spain:Springer,1996:1159-1164.
[18]Yao Yiyu. Three-way decisions and cognitive computing[J]. Cognitive Computation,2016,8(4):543-554.
[19]Fang Yu,Liu Zhonghui,Min Fan. Multi-objective cost-sensitive attribute reduction on data with error ranges[J]. International Journal of Machine Learning and Cybernetics,2016,7(5):783-793.
[20]Fang Yu,Liu Zhonghui,Min Fan. A PSO algorithm for multi-objective cost-sensitive attribute reduction on numeric data with error ranges[J]. Soft Computing,2017,21(23):7173-7189.
[21]Zhang Qinghua,Lv Gongxun,Chen Yuhong,et al. A dynamic three-way decision model based on the updating of attribute values[J]. Knowledge-Based Systems,2017,142:71-84.
[22]Li Weiwei,Jia Xiuyi,Wang Lu,et al. Multi-objective attribute reduction in three-way decision-theoretic rough set model[J]. International Journal of Approximate Reasoning,2019,105:327-341.
[23]张明,徐妍,陈韬,等. 基于核酸物化属性显著性约简的m6A位点识别[J]. 南京理工大学学报,2019,43(2):199-208.
Zhang Ming,Xu Yan,Chen Tao,et al. Identification of m6A site based on reduction of nucleotide physical-chemical properties significance[J]. Journal of Nanjing University of Science and Technology,2019,43(2):199-208.

相似文献/References:

[1]王 宇,杨志荣,杨习贝.决策粗糙集属性约简:一种局部视角方法[J].南京理工大学学报(自然科学版),2016,40(04):444.[doi:10.14177/j.cnki.32-1397n.2016.40.04.011]
 Wang Yu,Yang Zhirong,Yang Xibei.Local attribute reduction approach based on decision-theoretic rough set[J].Journal of Nanjing University of Science and Technology,2016,40(04):444.[doi:10.14177/j.cnki.32-1397n.2016.40.04.011]
[2]李京政,杨习贝,王平心,等.模糊粗糙集的稳定约简方法[J].南京理工大学学报(自然科学版),2018,42(01):68.[doi:10.14177/j.cnki.32-1397n.2018.42.01.010]
 Li Jingzheng,Yang Xibei,Wang Pingxin,et al.Stable attribute reduction approach for fuzzy rough set[J].Journal of Nanjing University of Science and Technology,2018,42(04):68.[doi:10.14177/j.cnki.32-1397n.2018.42.01.010]

备注/Memo

备注/Memo:
收稿日期:2019-03-15 修回日期:2019-05-24
基金项目:国家自然科学基金(41604114); 西南石油大学2018年高等教育教学改革研究项目(X2018JGYB043\37\38)
作者简介:方宇(1983-),男,副教授,主要研究方向:粗糙集、三支决策、粒计算等,E-mail:fangyu@swpu.edu.cn。
引文格式:方宇,高磊,刘忠慧,等. 基于三支决策的广义代价敏感近似属性约简[J]. 南京理工大学学报,2019,43(4):481-488.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-09-30