[1]贺 旺,杜永华,孙运刚,等.复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性[J].南京理工大学学报(自然科学版),2019,43(04):511-517.[doi:10.14177/j.cnki.32-1397n.2019.43.04.019]
 He Wang,Du Yonghua,Sun Yungang,et al.Static characteristics and fatigue behavior of edge-cracked thickaluminum plates double-side bonded with composite patches[J].Journal of Nanjing University of Science and Technology,2019,43(04):511-517.[doi:10.14177/j.cnki.32-1397n.2019.43.04.019]
点击复制

复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年04期
页码:
511-517
栏目:
出版日期:
2019-08-24

文章信息/Info

Title:
Static characteristics and fatigue behavior of edge-cracked thickaluminum plates double-side bonded with composite patches
文章编号:
1005-9830(2019)04-0511-07
作者:
贺 旺1杜永华1孙运刚1张 明2
1.国营芜湖机械厂,安徽 芜湖 241007; 2.南京航空航天大学 飞行器先进设计技术国防重点学科实验室,江苏 南京 210016
Author(s):
He Wang1Du Yonghua1Sun Yungang1Zhang Ming2
1.State-operated Machinery Factory of Wuhu,Wuhu 241007,China; 2.Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology ofFlight Vehicle,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China
关键词:
铝合金厚板 复合材料 破坏强度 疲劳寿命 脱粘
Keywords:
thick aluminum alloy plates composite material tensile strength fatigue life debond
分类号:
V257
DOI:
10.14177/j.cnki.32-1397n.2019.43.04.019
摘要:
通过静态和疲劳试验验证了复合材料双面胶接修理边缘裂纹铝合金厚板的效果。采用无损探伤方法考察了疲劳试验过程中铝合金结构裂纹长度与补片脱粘分布的关系。建立修理结构有限元模型,分析了胶层应力分布以及裂纹长度、补片脱粘情况对裂纹尖端应力强度因子的影响。结果表明:修理提高了破坏强度和疲劳寿命,降低了裂纹处应力水平及裂纹扩展速率; 胶接面剪应力分布与疲劳试验检测脱粘扩展相匹配,成抛物线形; 结构胶的粘接性能是影响修理效果的关键因素; 在裂纹附近胶接面不脱粘的情况下,裂纹扩展速率较低,实际修理可通过控制脱粘范围的方法,将裂纹扩展速率维持在较低水平,提高修理效果。
Abstract:
The static and fatigue tests were carried out to verify the effect of the double-sided adhesive joint repairing edge crack aluminum alloy thick plate with composite patches. The relationship between the crack length of aluminum alloy structure and the delamination debonding distribution of the patch during fatigue test was investigated by a non-destructive testing method. The finite element model of the repair structure was established to analyze the influence of the stress distribution of the rubber layer,the crack length and the debonding condition of the patch on the stress intensity factor at the crack tip. The results show that the repair improves the failure strength and fatigue life,which also reduces the stress level and crack growth rate at the crack. The results indicate that the shear stress distribution of the bonding surface matches the fatigue test to determine the debonding expansion,which is parabolic. The bonding performance of the structural adhesive is the key factor affecting the repair effect. The crack growth rate is lower in the case where the cemented surface is not debonded near the crack,and the actual repair can maintain the crack growth rate at a low level by controlling the debonding range,thereby improving the repair effect.

参考文献/References:

[1] 董登科,丁惠梁. 飞机金属结构复合材料修理技术[M]. 北京:航空工业出版社,2017.
[2]Baker A A. Repair of cracked or defective metallic aircraft components with advanced fiber composites[J]. Composites Structure,1984,2(2):153-234.
[3]Rose L R F. A cracked plate repaired by bonded reinforcements[J]. International Journal of Fracture,1982,18:135-144.
[4]陈绍杰. 复合材料结构修理指南[M]. 北京:航空工业出版社,2001:34-44.
[5]Papanikos P,Tserpes K I,Labeas G,et al. Progressive damage modeling of bonded composite repairs[J]. Theoretical and Applied Fracture Mechanics,2005,43:189-198.
[6]Chung K H,Yang Wonho. A study on the fatigue crack growth behavior of thick aluminum panels repaired with a composite patch[J]. Composite Strutures,2003,60:1-7.
[7]张移山,华庆详. 复合材料补片参数对裂纹尖端应力强度因子的影响[J]. 机械强度,2004,26(S):100-103.
Zhang Yishan,Hua Qingxiang. Effect of the composite patch parameters on stress intensity factors near the crack tip[J]. Journal of Mechanical Strength,2004,26(S):100-103.
[8]穆志韬,郝建滨,高雪霞,等. 含中心裂纹铝合金厚板复合材料补片胶接结构应力强度因子有限元分析[J]. 玻璃钢/复合材料,2015,7:50-53.
Mu Zhitao,Hao Jianbin,Gao Xuexia,et al. Stress intensity factor analysis of center-cracked metallic plate bonded with composite patches based on the finite element method[J]. Fiber Reinforced Plastics/Composites,2015,7:50-53.
[9]吉法祥,魏焕曹. 复合材料中界面特性与力学强度的关系[J]. 南京理工大学学报,1992,16(5):63-67.
Ji Faxiang,Wei Huancao. The relation between the interface and mechanical strength in the filling particles composite material[J]. Journal of Nanjing University of Science and Technology,1992,16(5):63-67.
[10]石小红,陈海立,周光明,等. 基于渐进损伤模型的双搭接对接接头弯曲性能[J]. 南京理工大学学报,2014,38(4):464-469.
Shi Xiaohong,Chen Haili,Zhou Guangming,et al. Bending of bilateral butt joints using progressive damage model[J]. Journal of Nanjing University of Science and Technology,2014,38(4):464-469.
[11]杨孚标.复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D]. 长沙:国防科技大学,2006.
[12]李小刚,赵美英,万小朋. 复合材料胶接修补参数优化研究[J]. 玻璃钢/复合材料,2010(1):28-31.
Li Xiaogang,Zhao Meiying,Wan Xiaopeng. Optimization of composite patch bonding repairing parameters[J]. Fiber Reinforced Plastics/Composites,2010(1):28-31.
[13]赵立涛,王志瑾. 复合材料胶接修补金属裂纹板的应力强度因子研究[J]. 飞机设计,2011(4):67-70.
Zhao Litao,Wang Zhijin. The study of stress intensity factor of cracked metallic structure repaired with adhesive bonding composite patch[J]. Aircraft Design,2011(4):67-70.
[14]张玎,杨晓华,周凯. 复合材料补片参数对修理后金属结构疲劳性能的影响[J]. 南京航空航天大学学报,2010(6):369-372.
Zhang Ding,Yang Xiaohua,Zhou Kai. Effects of patch parameters on fatigue performance of metallic structure repaired with adhesively bonded composite patch[J]. Journal of Nanjing University of Aeronautics & Astronautics,2010(6):369-372.
[15]牛春匀. 实用飞机复合材料结构设计与制造[M]. 北京:航空工业出版社,2010:282-283.
[16]苏维国,穆志韬,王朔. 金属裂纹板复合材料胶接修补结构裂纹扩展行为研究[J]. 沈阳航空航天大学学报,2014(2):37-40.
Su Weiguo,Mu Zhitao,Wang Shuo. Research on crack growth behavior of blade-body juncture horseshoe vortex[J]. Journal of Shenyang Aerospace University,2014(2):37-40.

相似文献/References:

[1]刘君,熊党生,熊华超.剪切增稠流体浸渍Kevlar复合材料的防刺性能[J].南京理工大学学报(自然科学版),2010,(02):271.
 LIU Jun,XIONG Dang-sheng,XIONG Hua-chao.Stab Resistance of Kevlar Composites Impregnated with Shear Thickening Fluid[J].Journal of Nanjing University of Science and Technology,2010,(04):271.
[2]蒋文俊,许建,赵春宝,等.改性层状双氢氧化镁铝的制备及在PA6中的阻燃应用[J].南京理工大学学报(自然科学版),2009,(02):272.
 JIANG Wen-jun,XU Jian,ZHAO Chun-bao,et al.Preparation of Modified Mg-Al Layered Double Hydroxide and Its Flame-retardant Application in PA6 Composites[J].Journal of Nanjing University of Science and Technology,2009,(04):272.
[3]杨毅,李凤生,刘宏英,等.无机表面改性制备纳米复合粒子[J].南京理工大学学报(自然科学版),2003,(03):328.
 YangYi LiFengsheng LiuHongying TanLinghua.Preparation of Nanometer Composite Particles with Inorganic Surface Modifier[J].Journal of Nanjing University of Science and Technology,2003,(04):328.
[4]宋云雪,史永胜,王晓鸣.复合材料火箭发射管有限元分析[J].南京理工大学学报(自然科学版),2000,(05):418.
 SongYunxue ShiYongsheng WangXiaoming.The Finite Element Analysis for the Composite Rocket Launching Case[J].Journal of Nanjing University of Science and Technology,2000,(04):418.
[5]王恒志.复合材料与活塞材料的耐磨性对比[J].南京理工大学学报(自然科学版),1997,(06):26.
 WangHengzhi.Contrast of Wear Resistance between Piston Materials and Composite[J].Journal of Nanjing University of Science and Technology,1997,(04):26.
[6]王乐善.关于射流侵彻玻璃钢的规律的探订[J].南京理工大学学报(自然科学版),1984,(04):71.
[7]武和全,毛鸿锋,侯海彬.复合材料仿竹薄壁管耐撞性和可靠性研究[J].南京理工大学学报(自然科学版),2017,41(02):186.[doi:10.14177/j.cnki.32-1397n.2017.41.02.008]
 Wu Hequan,Mao Hongfeng,Hou Haibin.Study on crashworthiness and reliability of compositebamboo-like thin-walled tube[J].Journal of Nanjing University of Science and Technology,2017,41(04):186.[doi:10.14177/j.cnki.32-1397n.2017.41.02.008]

备注/Memo

备注/Memo:
收稿日期:2019-01-23 修回日期:2019-07-09
作者简介:贺旺(1980-),男,高级工程师,主要研究方向:飞行器金属结构、复合材料结构修理,E-mail:wh5720hw@163.com。
引文格式:贺旺,杜永华,孙运刚,等. 复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性[J]. 南京理工大学学报,2019,43(4):511-517.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-09-30