[1]郭曼丽,王园丁,谭俊杰,等.N-S方程耦合雷诺平均湍流模型无网格算法研究[J].南京理工大学学报(自然科学版),2019,43(05):548-555.[doi:10.14177/j.cnki.32-1397n.2019.43.05.002]
 Guo Manli,Wang Yuanding,Tan Junjie,et al.Meshless method coupled with different Reynolds averageturbulence model for solving Navier-Stokes equation[J].Journal of Nanjing University of Science and Technology,2019,43(05):548-555.[doi:10.14177/j.cnki.32-1397n.2019.43.05.002]
点击复制

N-S方程耦合雷诺平均湍流模型无网格算法研究()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年05期
页码:
548-555
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Meshless method coupled with different Reynolds averageturbulence model for solving Navier-Stokes equation
文章编号:
1005-9830(2019)05-0548-08
作者:
郭曼丽12王园丁12谭俊杰3林庆国12戴 佳12
1.上海空间推进研究所,上海201112; 2.上海空间发动机工程技术研究中心,上海201112; 3.南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
Guo Manli12Wang Yuanding12Tan Junjie3Lin Qingguo12Dai Jia12
1.Shanghai Institute of Space Propulsion,Shanghai 201112,China; 2.Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China; 3.School ofEnergy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
无网格法 湍流 点云重构 移动最小二乘
Keywords:
meshless methods turbulence cloud of points reconstruction moving least square
分类号:
V211.3
DOI:
10.14177/j.cnki.32-1397n.2019.43.05.002
摘要:
该文研究基于最小二乘无网格方法的耦合雷诺平均湍流模型求解粘性流动的问题。采用标准k-ε、重整化群(RNG)k-ε、可实现k-ε及威尔考克斯(Wilcox)k-ω模型封闭雷诺平均Navier-Stokes(N-S)方程,采用AUSM+-up迎风格式求解数值通量,应用结合点云重构技术的最小二乘法拟合空间导数,以及三阶强劲稳定保护型(SSP)型龙格库塔(Runge-Kutta)显示时间推进格式求解离散后的控制方程。基于以上算法,成功实现了对三维ONERA M6机翼粘性绕流流场的数值模拟,清晰地捕捉到了M6机翼表面的波系结构。结果显示,波系结构较合理,展向方向不同位置处的机翼表面压力系数分布曲线与实验值吻合较好,表明该文方法可有效模拟三维粘性流动,拓展了无网格方法求解湍流流动的途径。
Abstract:
The moving least square meshless method coupled with different RANS turbulent models is used to solve the N-S equations in this paper. Four two-equation turbulence models(standard,RNG,realizable and Wilcox models)are used to close the Reynolds average Navier-Stokes equation. An efficient and accurate 3D least square meshless algorithm is shown to solve the N-S equations based on the AUSM+-up and the MUSCL scheme. The explicit three-stage strong stability preserving(SSP)Runge-Kutta method is chosen to advance the time evolution. The spatial derivatives are fitted by the least square method based on the cloud of points reconstruction technology,which can obtain good results from highly anisotropic cloud of points. The explicit expressions of the spatial derivatives are given in the present work. In order to investigate the robustness and accuracy of the present meshless method,both transonic flow and supersonic flow are simulated. The results show a good agreement with the exact solution or the experiment results.Based on the above algorithm,the numerical simulation of classical three-dimensional viscous flow around ONERA M6 wing is successfully realized,and the wave structure on the surface of M6 wing is clearly captured. The wave structure is reasonable. The distribution curves of pressure coefficients on the wing surface at different positions in the spreading direction are compared with the experimental data,and the results are in good agreement. The results show that the meshless method in this paper can effectively simulate three-dimensional viscous flow,and it expands ways of solving turbulent flow.

参考文献/References:

[1] Liu J S,Su S J. A potentially gridless solution method for the compressible Euler/Navier-Stokes equations[R]. AIAA-1996-0526,1996.
[2]Morinishi K M. An implicit gridless type solver for the Navier-Stokes equations[J]. Computational Fluid Dynamics Journal,2001(Special Issue):551-560.
[3]Chen H Q,Shu C. An efficient implicit mesh-free method to solve two-dimensional compressible Euler equations[J]. International Journal of Modern Physics C,2005,3(16):439-454.
[4]Sridar D,Balakrishnan N. An upwind finite difference scheme for meshlesssolvers[J]. Journal of Computational Physics,2003,189(1):1-29.
[5]Cai X W,Tan J J,Ma X J,et al. Application of hybrid Cartesian grid and gridless approach to moving boundary flow problems[J]. International Journal for Numerical Methods in Fluids,2013,72(9):994-1013.
[6]马志华. 自适应无网格及网格和无网格混合算法研究[D]. 南京:南京航空航天大学航空宇航学院,2008.
[7]星周. 含动边界复杂非定常流动的无网格算法研究[D]. 南京:南京理工大学能源与动力工程学院,2012.
[8]Munikrishna N,Balakrishnan N. Turbulent flow computations on a hybrid Cartesian point distribution using meshless solver LSFD-U[J]. Computers & Fluids,2011(40):118-138.
[9]王刚,叶正寅,蒋超奇,等. 高雷诺数下求解N-S方程的无网格算法[J]. 应用力学学报,2007,24(3):348-352.
Wang Gang,Ye Zhengyin,Jiang Chaoqi,et al. Gridless method for Navier-Stokes equations with high Reynolds number[J]. Chinese Journal of Applied Mechanics,2007,24(3):348-352.
[10]蔡晓伟,谭俊杰,张木,等. 粘性流模拟中基于点云重构的最小二乘无网格法[J]. 南京理工大学学报,2013,37(6):880-885.
Cai Xiaowei,Tan Junjie,Zhang Mu,et al. Meshless least square method based on COP reconstruction for viscous flow simulation[J]. Journal of Nanjing University of Science and Technology,2013,37(6):880-885.
[11]王园丁,谭俊杰,蔡晓伟,等. 无网格法耦合RNG k-ε湍流模型在亚、跨声速翼型黏性绕流中的数值模拟[J]. 航空学报,2015,36(5):1411-1421.
Wang Yuanding,Tan Junjie,Cai Xiaowei,et al. Numerical simulation of subsonic and transonic viscous flow around airfoil using meshless method coupled with RNG k-ε turbulent model[J]. Acta Aeronautica et Astronautica Sinica,2015,36(5):1411-1321.
[12]Wang Y D,Cai X W,Ma X J,et al. Meshfree simulation of flow around airfoil using different turbulent models[J]. Progress in Computational Fluid Dynamics,2017,17(2):75-89.
[13]Wang Y D,Jing Y,Dai J,et al. The study about cloud of points reconstruction with the framework of meshfree method for viscous flows[J]. Journal of Mechanics,2018,34(2):75-87.
[14]Launder B E,Spalding D B. Lectures in mathematical models of turbulence[M]. London,UK:Academic Press,1972.
[15]Yakhot V,Orzag S A. Renormalization group analysis of turbulence:basic theory[J]. J Scient Comput,1986(1):3-11.
[16]Shih T H,Liou W W,Shabbir A,et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Comput,Fluids,1995,24:227-238.
[17]Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal,1988,26(11):1299-1310.
[18]Schmitt V,Charpin F. Pressure distribution on the ONERA M6 wing at transonic Mach numbers,experimental data base for computer program assessment[R]. Appendix B1 in AGARD-AR-138,1979.

相似文献/References:

[1]张丽丽,周慎杰,陈举华,等.高炉三维气固湍流和煤粉燃烧过程数值模拟[J].南京理工大学学报(自然科学版),2007,(02):163.
 ZHANG Li-li,ZHOU Shen-jie,CHEN Ju-hua.Numerical Simulations of Three-dimensional Gas-particle Turbulent Flow and Pulverized Coal Combustion in Blast Furnace[J].Journal of Nanjing University of Science and Technology,2007,(05):163.
[2]杨余旺,孙思诚,王增刚.微气泡降阻研究进展[J].南京理工大学学报(自然科学版),2001,(02):220.
 YangYuwang SunSicheng WangZenggang.Research Achievement of Microbubble Drag Reduction[J].Journal of Nanjing University of Science and Technology,2001,(05):220.
[3]张玉荣,金志明.RLPG高压射流初始段测试及分析[J].南京理工大学学报(自然科学版),1999,(01):54.
 Zhang Yurong Jin Zhiming.Measurement and Analysis of High Pressure Liquid Jet at Its Initial Stage in RLPG[J].Journal of Nanjing University of Science and Technology,1999,(05):54.
[4]孔令荣,郭小娟,王 昊.导体电磁散射特性无网格方法研究[J].南京理工大学学报(自然科学版),2014,38(05):669.
 Kong Lingrong,Guo Xiaojuan,Wang Hao.Meshless method of electromagnetic scattering characteristics of conductor[J].Journal of Nanjing University of Science and Technology,2014,38(05):669.
[5]李 校,郑 林.基于格子玻尔兹曼方法的室内颗粒运动模拟[J].南京理工大学学报(自然科学版),2018,42(05):591.[doi:10.14177/j.cnki.32-1397n.2018.42.05.013]
 Li Xiao,Zheng Lin.Numerical simulation of indoor particle motion based onlattice Boltzmann method[J].Journal of Nanjing University of Science and Technology,2018,42(05):591.[doi:10.14177/j.cnki.32-1397n.2018.42.05.013]

备注/Memo

备注/Memo:
收稿日期:2019-01-20 修回日期:2019-05-10
基金项目:国家自然科学基金(11072114); 上海航天科技创新基金(SAST201365)
作者简介:郭曼丽(1988-),女,硕士,工程师,主要研究方向:空间推进技术及计算流体力学,E-mail:guomanli1988@163.com; 通讯作者:王园丁(1987-),男,博士,高级工程师,主要研究方向:空间推进技术及计算流体力学,E-mail:wyd19870328@163.com。
引文格式:郭曼丽,王园丁,谭俊杰,等. N-S方程耦合雷诺平均湍流模型无网格算法研究[J]. 南京理工大学学报,2019,43(5):548-555.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-11-30