[1]程伟华,谭 晶,徐明生,等.面向电力工控网络大数据的微聚集差分隐私保护方法[J].南京理工大学学报(自然科学版),2019,43(05):571-577.[doi:10.14177/j.cnki.32-1397n.2019.43.05.005]
 Cheng Weihua,Tan Jing,Xu Mingsheng,et al.Micro-aggregation for differential privacy protection methodbased on big data of power control network[J].Journal of Nanjing University of Science and Technology,2019,43(05):571-577.[doi:10.14177/j.cnki.32-1397n.2019.43.05.005]
点击复制

面向电力工控网络大数据的微聚集差分隐私保护方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年05期
页码:
571-577
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Micro-aggregation for differential privacy protection methodbased on big data of power control network
文章编号:
1005-9830(2019)05-0571-07
作者:
程伟华1谭 晶1徐明生1倪 震2
1.江苏电力信息技术有限公司,江苏 南京210024; 2.南京晓庄学院 信息工程学院,江苏 南京 211171
Author(s):
Cheng Weihua1Tan Jing1Xu Mingsheng1Ni Zhen2
1.Jiangsu Electric Power Information Technology Co Ltd,Nanjing 210024,China; 2.School of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China
关键词:
微聚集 匿名化 频繁模式挖掘 差分隐私保护
Keywords:
micro-aggregation anonymization frequent pattern mining differential privacy protection
分类号:
TP311.5
DOI:
10.14177/j.cnki.32-1397n.2019.43.05.005
摘要:
针对隐私泄露问题,该文提出一种在频繁模式挖掘中依托微聚集算法实现的差分隐私保护方法,并将其应用到电力工控网络中。通过对指数机制和每个模式的微聚集权重的权衡,选择了Top-k频繁模式方法,并加入拉普拉斯噪声进行扰动,使每个被选择模式的原始支持度均实现了隐私保护与效用的平衡,最大程度地确保了信息发布、数据分析需求和隐私保护需求的平衡,保障了各方对电力工控系统的信任和电力工控系统的健康成长,在数据集上的实验结果验证了该方法的有效性。
Abstract:
In order to solve the problem of privacy disclosure of network,the differential privacy protection in frequent pattern mining is implemented based on the micro-aggregation algorithm for the power industrial control network to ensure the balance among information release,data analysis requirements and privacy protection demands by weighting the exponential mechanism and the micro-aggregation weight of each mode. By adding the Laplace noise disturbance,the Top-k frequent pattern method is selected and the original support each of the selected mode achieves a balance between privacy and utility. The method in this paper can guarantee the trust of all parties in the power industrial control system and the healthy growth of power industrial control system. The experimental results on the dataset verify the effectiveness of the method.

参考文献/References:

[1] Latanya Sweeney. K-anonymity:A model for protecting privacy[J]. International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2012,10(5):557-570.
[2]Ganta S R,Kasiviswanathan S P,Smith A. Composition attacks and auxiliary information in data privacy[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,US:ACM Press,2008:265-273.
[3]Chhinkaniwala H,Garg S. Privacy gain based multi-iterative k-anonymization to protect respondents privacy[J]. Computer Science,2014,14(6):3214-3219.
[4]张啸剑,孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报,2014,37(4):927-949.
Zhang Xiaojian,Meng Xiaofeng. Differential privacy in data publication and anlysis[J]. Chinese Journal of Computers,2014,37(4): 927-949.
[5]Friedman A,Schuster A. Data mining with differential privacy[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,US:ACM Press,2010:493-502.
[6]刘晓迁,李千目. 基于聚类匿名化的差分隐私保护数据发布方法[J]. 通信学报,2016,37(5):125-129.
Liu Xiaoqian,Li Qianmu. Differentially private data release based on clustering anonymization[J]. Journal on Communications,2016,37(5): 125-129.
[7]姜火文,曾国荪,马海英. 面向表数据发布隐私保护的贪心聚类匿名方法[J]. 软件学报,2017,28(2):341-351.
Jiang Huowen,Zeng Guosun,Ma Haiying. Greedy clustering-anonymity method for privacy preservation of table datapublishing[J].Journal of Software,2017,28(2): 341-351.
[8]徐东,李贤,张子迎,等. 面向聚类挖掘的个性化隐私保护算法[J]. 哈尔滨工程大学学报,2018,39(11):51-57.
Xu Dong,Li Xian,Zhang Ziying,et al.Research on a personalized privacy protection method for cluster mining[J].Journal of Harbin Engineering University,2018,39(11): 51-57.
[9]倪震,李千目,郭雅娟. 面向电力大数据日志分析平台的异常监测集成预测算法[J]. 南京理工大学学报,2017,41(5):634-645.
Ni Zhen,Li Qianmu,Guo Yajuan.Ensemble forecasting algorithm for anomaly detection on electric-power big data log analysis platform[J]. Journal of Nanjing University of Science and Technology,2017,41(5): 634-645.
[10]杨静,王超,张健沛. 基于敏感属性熵的微聚集算法[J]. 电子学报,2014,42(7):1327-1337.
Yang Jing,Wang Chao,Zhang Jianpei.Micro-aggregation algorithm based on sensitive attribute entropy[J]. Chinese Journal of Electronics,2014,42(7):1327-1337.
[11]程亮. 实现个性化隐私保护的微聚集算法研究[D]. 合肥:中国科学技术大学计算机科学与技术学院,2016.
[12]熊平,朱天清,王晓峰. 差分隐私保护及其应用[J]. 计算机学报,2014,37(1):101-122.
Xiong Ping,Zhu Tianqing,Wang Xiaofeng. A survey on differential privacy and applications[J]. Chinese Journal of Computers,2014,37(1): 101-122.
[13]Dwork C. Calibrating noise to sensitivity in private data analysis[J]. Lecture Notes in Computer Science,2012,3876(8):265-284.
[14]Dwork C. The algorithmic foundations of differential privacy[M]. San Diego,US:Now Publisher Inc,2014:211-407.
[15]Xu L,Jiang C,Chen Y,et al. A framework for categorizing and applying privacy-preservation techniques in big data mining[J]. Computer,2016,49(2):54-62.
[16]Choromanska A,Choromanski K,Jagannathan G,et al. Differentially-private learning of low dimensional mani-folds[J]. Theoretical Computer Science,2016,620: 91-104.
[17]Nelson B,Olovsson T. Introducing differential privacy to the automotive domain:Opportunities and challenges[C]//IEEE Vehicular Technology Conference. Princeton,US:IEEE,2017:1-7.
[18]Wu G,Xia X,He Y. Analytic theory to differential privacy[J]. arXiv preprint arXiv:1702.02721,2017.
[19]Soria Comas J,Domingo Ferrer J,Sánchez D,et al. Enhancing data utility in differential privacy via microaggregation-based k-anonymity[J]. The International Journal on Very Large Data Bases,2014,23(5):771-794.

备注/Memo

备注/Memo:
收稿日期:2018-09-07 修回日期:2019-04-03
作者简介:程伟华(1978-),男,高级工程师,主要研究方向:计算机软件与理论、电力信息化,E-mail:chengweihua78@126.com。
引文格式:程伟华,谭晶,徐明生,等. 面向电力工控网络大数据的微聚集差分隐私保护方法[J]. 南京理工大学学报,2019,43(5):571-577.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-11-30