[1]李亚伦,柴争义,陈国强.一种用于异常检测的实值否定选择算法[J].南京理工大学学报(自然科学版),2019,43(05):586-591.[doi:10.14177/j.cnki.32-1397n.2019.43.05.007]
 Li Yalun,Chai Zhengyi,Chen Guoqiang.Improved real-value negative selection algorithm for anomaly detection[J].Journal of Nanjing University of Science and Technology,2019,43(05):586-591.[doi:10.14177/j.cnki.32-1397n.2019.43.05.007]
点击复制

一种用于异常检测的实值否定选择算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年05期
页码:
586-591
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Improved real-value negative selection algorithm for anomaly detection
文章编号:
1005-9830(2019)05-0586-06
作者:
李亚伦1柴争义2陈国强3
天津工业大学 1.电子与信息工程学院; 2.计算机科学与软件学院,天津 300387; 3.河南大学 计算机与信息工程学院,河南 开封 475004
Author(s):
Li Yalun1Chai Zhengyi2Chen Guoqiang3
1.School of Electronic and Information Engineering; 2.School of Computer Science andSoftware Engineering,Tianjin Polytechnic University,Tianjin 300387,China; 3.School of Computer and Information Engineering,Kaifeng 475004,China
关键词:
否定选择算法 异常检测 零假设 检测器生成
Keywords:
negative selection algorithm anomaly detection null hypothesis detector generation
分类号:
TP18; TP309
DOI:
10.14177/j.cnki.32-1397n.2019.43.05.007
摘要:
为了提高实值否定选择算法的效率,通过分析检测器的更新过程,针对已有实值否定选择算法检测器生成冗余的问题,提出一种减少冗余检测器生成的优化算法。所提算法检测器采用二次否定选择,并通过改变接受和拒绝零假设的条件来快速更新检测器集,进而减少无效检测器的生成。采用该算法对合成数据集2DSyntheticData和实际的Iris数据集进行了实验,结果表明,该算法误警率低,所需检测器的数量明显减少,适合实时异常检测。
Abstract:
To solve the problem that existing real-valued negative selection algorithms generate redundancy detectors,an improved detector generation algorithm is proposed by analyzing the updating process of the detector set. The proposed algorithm uses dual negative selection and quickly updates the detector set by changing the conditions of accepting and rejecting the null hypothesis,thereby it reduces the generation of invalid detectors. The 2DSyntheticData and the actual Iris data set are used to test the algorithm. Experimental results show that the false positive rate of the algorithm is lower,especially the number of detectors is significantly reduced,and it is suitable for the real-time anomaly detection.

参考文献/References:

[1] Abreu Caio,Cesar Enside. An approach based on the negative selection algorithm for real noise classification in speech signals[J]. International Journal of Electronics and Communications,2017,72(1):125-133.
[2]Li Dong,Liu Shulin,Zhang Hongli. A boundary-fixed negative selection algorithm with online adaptive learning under small samples for anomaly detection[J]. Engineering Applications of Artificial Intelligence,2016,50(2):93-105.
[3]柴争义,王献荣,王亮. 用于异常检测的实值否定择算法[J]. 吉林大学学报(工学版),2012,42(1):176-181.
Chai Zhengyi,Wang Xianrong,Wang Liang. Real-value negative selection algorithm for anomaly detection[J]. Journal of Jinlin University Engineering and Technology Edition,2012,42(1):176-181.
[4]Fouladvand Sajjad,Osareh Alireza,Shadgar Bita. DENSA:An effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors[J]. Engineering Applications of Artificial Intelligence,2017,62:359-372.
[5]金章赞,廖明宏,肖刚. 否定选择算法综述[J]. 通信学报,2013(1):159-170.
Jin Zhangzan,Liao Minghong,Xiao Gang. Survey of negative selection algorithms[J]. Journal on Communication,2013(1):159-170.
[6]Zhou Ji,Dipankar Dasgupta. V-detector:An efficient negative selection algorithm with probably adequate detector coverage[J]. Information Sciences,2009,17(9):1390-1406.
[7]柴争义,吴慧欣,吴勇. 一种免疫实值检测器优化生成算法[J]. 吉林大学学报(工学版),2012,42(5):1251-1256.
Chai Zhengyi,Wu Huixin,Wu Yong. Optimization algorithm for immune real-value detector generation[J]. Journal of Jinlin University Engineering and Technology Edition,2012,42(0):1251-1256.
[8]郑旭飞,方慧,李涛. 二次否定选择算法[J]. 中国科学:信息科学,2013,43(4):611-625.
Zheng Xufei,Fang Hui,Li Tao. Dual negative selection algorithm[J]. Science China(Information Sciences),2013,43(4):611-625.
[9]Xiao Xin,Li Tao,Zhang Ruirui. An immune optimization based real-valued negative selection algorithm[J]. Applied Intelligence,2017,42(2):289-302.
[10]Mohi-Aldeen,Shayma Mustafa. Negative selection algorithm(NSA)for test data generation of path testing[J]. Applied Soft Computing,2016,49(8):1118-1128.
[11]胡小娟,刘磊,邱宁佳. 基于主动学习和否定选择的垃圾邮件分类算法[J]. 电子学报,2018,46(1):203-209.
Hu Xiaojuan,Liu Lei,Qiu Ningjia. A novel spam categorization algorithm based on active learning method and negative selection algorithm[J]. Acta Electronica Sinica,2018,46(1):203-209.
[12]Yang Tao,Chen Wen,Li Tao. An antigen space density based real-value negative selection algorithm[J]. Applied Soft Computing,2017,61:860-874.
[13]Chen Wen,Li Tao. Parameter analysis of negative selection algorithm[J]. Information Sciences,2017(420):218-234.
[14]黄伟,陈昊,郭雅娟. 融合领域知识的网络异常检测方法[J]. 南京理工大学学报,2016,40(2):229-235.
Huang Wei,Chen Hao,Guo Yajuan. Network anomaly detection approach using domain knowledge[J]. Journal of Nanjing University of Science and Technology,2016,40(2):229-235.
[15]程伟华,赵 军,吴 鹏. 基于大数据流的网络流量检测与分析[J]. 南京理工大学学报,2017,43(3):294-300.
Cheng Weihua,Zhao Jun,Wu Peng. Network traffic detection and analysis based on big data flow[J]. Journal of Nanjing University of Science and Technology,2017,43(3):294-300.
[16]Schmidt Brian,Al-Fuqaha Ala. A new approach to optimized negative selection[C]//IEEE Congress on Evolutionary Computation. Barcelona,Spain:IEEE,2016:1793-1799.
[17]耿素云. 概率统计(第3版)[M]. 北京:北京大学出版社,2016.
[18]Columbia University. 2DSyntheticData[EB/OL]. http://www. zhouji. net/prof/2DSyntheticData. zip,2017-05-10.
[19]StatLib Datasets Archive[EB/OL]. http://lib. stat. cmu. edu//dataset/,2017-05-10.
[20]Alizadeh Esmaeil,Meskin Khashayar. A negative selection immune system inspired methodology for fault diagnosis of wind turbines[J]. IEEE Transactions on Cybernetics,2016,48(6):1990-1998.

相似文献/References:

[1]程伟华,赵 军,吴 鹏.基于大数据流的网络流量检测与分析[J].南京理工大学学报(自然科学版),2017,41(03):294.[doi:10.14177/j.cnki.32-1397n.2017.41.03.004]
 Cheng Weihua,Zhao Jun,Wu Peng.Network traffic detection and analysis based on big data flow[J].Journal of Nanjing University of Science and Technology,2017,41(05):294.[doi:10.14177/j.cnki.32-1397n.2017.41.03.004]

备注/Memo

备注/Memo:
收稿日期:2018-09-23 修回日期:2018-12-25
基金项目:国家自然科学基金(61972456); 河南省高等学校重点科研项目(14A520079); 河南省科技攻关计划(162102210168)
作者简介:李亚伦(1976-),女,硕士,讲师,主要研究方向:网络异常检测、智能计算等,E-mail:liyalun@tjpu.edu.cn; 通讯作者:柴争义(1976-),男,博士,教授,主要研究方向:智能优化、网络安全等,E-mail:supper_chai@126.com。
引文格式:李亚伦,柴争义,陈国强. 一种用于异常检测的实值否定选择算法[J]. 南京理工大学学报,2019,43(5):586-591.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-11-30