[1]汤可宗,柳炳祥,詹棠森,等.基于极大极小关联密度的多目标微分进化算法[J].南京理工大学学报(自然科学版),2019,43(06):693-696.[doi:10.14177/j.cnki.32-1397n.2019.43.06.004]
 Tang Kezong,Liu Bingxiang,Zhan Tangsen,et al.Multi-objective differential evolution algorithm based onmax-min correlation density[J].Journal of Nanjing University of Science and Technology,2019,43(06):693-696.[doi:10.14177/j.cnki.32-1397n.2019.43.06.004]
点击复制

基于极大极小关联密度的多目标微分进化算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年06期
页码:
693-696
栏目:
出版日期:
2019-12-31

文章信息/Info

Title:
Multi-objective differential evolution algorithm based onmax-min correlation density
文章编号:
1005-9830(2019)06-0693-07
作者:
汤可宗1柳炳祥1詹棠森1李佐勇2蔡华辉1
1.景德镇陶瓷大学 信息工程学院,江西 景德镇 333403; 2.闽江学院 工业机器人应用福建省高校工程研究中心,福建 福州 350121
Author(s):
Tang Kezong1Liu Bingxiang1Zhan Tangsen1Li Zuoyong2Cai Huahui1
1.School of Information Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China; 2. Fujian Provincial University Engineering Research Center of Industrial Robot Application,Minjiang University,Fuzhou 350121,China
关键词:
极大极小关联密度 多目标优化 微分进化 进化算法 自适应选择策略
Keywords:
max-min correction density multi-objective optimization differential evolution evolution algorithm adaptive selection strategy
分类号:
TP291
DOI:
10.14177/j.cnki.32-1397n.2019.43.06.004
摘要:
采用微分进化方法求解多目标优化问题,为了改善解集分布性和提高算法收敛性,提出1种基于极大极小关联密度的多目标微分进化算法。该算法定义了极大极小关联密度。在严格遵守Pareto支配规则的基础上,给出了基于极大极小关联密度的外部档案集维护方法,从而避免或减少最终解集的多样性损失。1种自适应选择策略通过评价个体的关联密度来指导个体优劣的选择过程,在确保最优个体进入下一代种群的同时,尽可能使个体的选择覆盖更广泛的搜索空间。实验结果显示,与多目标均匀多样性差分进化(MUDE)、基于反对称的自适应混合差分进化(OSADE)和非劣排序遗传算法II(NSGA-II)等经典算法相比,该文算法在世代距离(GD)和空间(SP)性能指标上有更好的表现,具有更优的Pareto前沿分布性与收敛性。
Abstract:
In order to improve the distribution of solution set and the convergence of the algorithm for multi-objective optimization problems solving by differential evolution,a multi-objective differential evolution algorithm based on max-min correlation density is proposed. A max-min correlation density is defined. Observing the Pareto domination rule strictly,a maintenance method of external archives based on the max-min correlation density is given to avoid or reduce the loss of diversity of the final solution set. An adaptive selection strategy is designed to guide the selection process of the individual and ensure that the optimal individual enters the next generation of population by evaluating the correlation density of the individual,and the individual selection is covered in a wider search space as much as possible. The experimental results show that the proposed algorithm has better performance in generational distance(GD)and spacing(SP)performance criteria than other comparison algorithms,such as multi-objective uniform-diversity differential evolution(MUDE),opposition-based self-adaptive differential evolution(OSADE)and non-dominated sorting genetic algorithm II(NSGA-II),and has a better distribution and convergence of the Pareto frontier.

参考文献/References:

[1] Lampinen J. DE’s selection rule for multi-objective optimization[R]. South Carolina,Finland:Department of Information Technology,Lappeenranta University of Technology,2001:1-10.
[2]Kukkonen S,Lampinen J. An Extension of generalized differential evolution for multi-objective optimization with constraints[C]//The 8th International Conference on Parallel Problem Solving from Nature. Berlin,Germany:Springer-Verlag,2004:18-22.
[3]Abbass H A. The self-adaptive Pareto differential evolution algorithm[C]//2002 IEEE Congress on Evolutionary Computation. Piscataway,NJ,USA:IEEE Press,2002:831-836.
[4]RobiAcˇ T,FilipiAcˇ B. DEMO:Differential evolution for multiobjective optimization[C]//EMO’05 Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization. Berlin,Germany:Springer-Verlag,2005:520-533.
[5]Brest J. Differential evolution with self-adaptation and local search for constrained multiobjective optimization[C]//Proceedings of the Eleventh Conference on Congress on Evolutionary Computation. Piscataway,NJ,USA:IEEE Press,2009:195-202.
[6]Kamiyama D,Tamura K,Yasuda K. Local descent direction vector-based differential evolution for multiobjective optimization[J]. Electronics & Communications in Japan,2014,97(5):36-42.
[7]Gholaminezhad I,Jamali A. A multi-objective differential evolution approach based on ε-elimination uniform-diversity for mechanism design[J]. Structural & Multidisciplinary Optimization,2015,52(5):1-17.
[8]Chong J K. A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution[J]. Memetic Computing,2016,8(2):147-165.
[9]Fan Qinqin,Yan Xuefeng. Multi-objective modified differential evolution algorithm with archive-base mutation for solving multi-objective p-xylene oxidation process[J]. Journal of Intelligent Manufacturing,2018,29(1):35-49.
[10]Veldhuizen D A V,Lamont G B. Multiobjective evolutionary algorithm test suites[C]//Proceedings of the ACM Symposium on Applied Computing. New York,USA:ACM Press,1999:351-357.
[11]Fonseca C M,Fleming P J. Multiobjective genetic algorithms made easy:Selection sharing and mating restriction[C]//First International Conference on Genetic Algorithms in Engineering Systems:Innovations and Applications. Sheffield,UK:IET Press,1995:45-52.
[12]Deb K. Multi-objective genetic algorithm:Problem difficulties and construction of test problems[J]. Evolutionary Computation,1999,7(3):205-230.
[13]Abraham A,Jain L,Goldberg R. Evolutionary multiobjective optimization. Theoretical advances and applications[M]. Berlin,Germany:Springer-Verlag,2005:105-145.
[14]Deb K,Pratap A,Agarwal S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[15]Veldhuizen D A V,Lamont G B. On measuring multiobjective evolutionary algorithm performance[C]//Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway,NJ,USA:IEEE Press,2000:204-211.
[16]Schott J R. Fault tolerant design using single and multicriteria genetic algorithm optimization[J]. Cellular Immunology,1995,37(1):1-13.

相似文献/References:

[1]张琦,朱春生,冉红亮,等.基于NSGA-Ⅱ的测试性指标分配方法[J].南京理工大学学报(自然科学版),2012,36(04):650.
 ZHANG Qi,ZHU Chun-sheng,RAN Hong-liang,et al.Testability Index Distribution Method Based on NSGA-Ⅱ Algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(06):650.
[2]洪亚军,王亚平,徐诚,等.单兵榴弹武器系统集成优化设计方法[J].南京理工大学学报(自然科学版),2012,36(02):216.
 HONG Ya-jun,WANG Ya-ping,XU Cheng.Integrated Optimization Design of Individual Grenade Launcher System[J].Journal of Nanjing University of Science and Technology,2012,36(06):216.
[3]肖迪,葛启承,林锦国,等.一种双种群遗传粒子群算法及在SMB优化中的应用[J].南京理工大学学报(自然科学版),2012,36(01):31.
 XIAO Di,GE Qi-cheng,LIN Jin-guo,et al.Double Populations Genetic and Particle Swarm Algorithm and Its Application in SMB Optimization[J].Journal of Nanjing University of Science and Technology,2012,36(06):31.
[4]申晓宁,李涛,张敏.一种基于模糊逻辑引入偏好信息的多目标遗传算法[J].南京理工大学学报(自然科学版),2011,(02):245.
 SHEN Xiao-ning,LI Tao,ZHANG Min.Multi-objective Optimization Genetic Algorithm Incorporating Preference Information Based on Fuzzy Logic[J].Journal of Nanjing University of Science and Technology,2011,(06):245.
[5]卫忠,徐晓飞,邓胜春,等.基于演化多目标算法的混合流水作业调度优化[J].南京理工大学学报(自然科学版),2006,(03):327.
 WEI Zhong,XU Xiao-fei,DENG Sheng-chun.Hybrid Flow Shop Scheduling Problem Based on Evolutionary Multi-objective Algorithm[J].Journal of Nanjing University of Science and Technology,2006,(06):327.
[6]李淑英,潘 亚,费 薇,等.基于分组遗传算法的虚拟机放置方法[J].南京理工大学学报(自然科学版),2016,40(03):322.[doi:10.14177/j.cnki.32-1397n.2016.40.03.012]
 Li Shuying,Pan Ya,Fei Wei,et al.Virtual machine placement method based on grouping genetic algorithm[J].Journal of Nanjing University of Science and Technology,2016,40(06):322.[doi:10.14177/j.cnki.32-1397n.2016.40.03.012]
[7]李志旭,杨国来,葛建立.考虑材料特性参数误差的某火炮摇架多目标优化[J].南京理工大学学报(自然科学版),2017,41(06):671.[doi:10.14177/j.cnki.32-1397n.2017.41.06.001]
 Li Zhixu,Yang Guolai,Ge Jianli.Multi-objective optimization for cradle carriage of gunconsidering material property parameter errors[J].Journal of Nanjing University of Science and Technology,2017,41(06):671.[doi:10.14177/j.cnki.32-1397n.2017.41.06.001]
[8]邹上元,刘海瑞,蒋延杰,等.六维微重力模拟平台构型参数的多目标优化[J].南京理工大学学报(自然科学版),2019,43(02):147.[doi:10.14177/j.cnki.32-1397n.2019.43.02.004]
 Zou Shangyuan,Liu Hairui,Jiang Yanjie,et al.Multi-objective optimization of configuration parameter forsix dimensional microgravity simulation platform[J].Journal of Nanjing University of Science and Technology,2019,43(06):147.[doi:10.14177/j.cnki.32-1397n.2019.43.02.004]

备注/Memo

备注/Memo:
收稿日期:2018-12-04 修回日期:2019-05-11
基金项目:国家自然科学基金(61662037; 71763013); 江西省杰出青年人才资助计划(20171bcb23069); 江西省教育厅科学技术研究项目(GJJ170764); 工业机器人应用福建省高校工程研究中心开放基金(MJUKF-IRA201808)
作者简介:汤可宗(1978-),男,博士,副教授,主要研究方向:智能信息处理,E-mail:tangkezong@126.com。
引文格式:汤可宗,柳炳祥,詹棠森,等. 基于极大极小关联密度的多目标微分进化算法[J]. 南京理工大学学报,2019,43(6):693-699.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-12-31