[1]王 雷,石 鑫.基于改进蚁群算法的移动机器人动态路径规划[J].南京理工大学学报(自然科学版),2019,43(06):700-707.[doi:10.14177/j.cnki.32-1397n.2019.43.06.005]
 Wang Lei,Shi Xin.Dynamic path planning of mobile robot based onimproved ant colony algorithm[J].Journal of Nanjing University of Science and Technology,2019,43(06):700-707.[doi:10.14177/j.cnki.32-1397n.2019.43.06.005]
点击复制

基于改进蚁群算法的移动机器人动态路径规划()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年06期
页码:
700-707
栏目:
出版日期:
2019-12-31

文章信息/Info

Title:
Dynamic path planning of mobile robot based onimproved ant colony algorithm
文章编号:
1005-9830(2019)06-0700-08
作者:
王 雷石 鑫
安徽工程大学 机械与汽车工程学院,安徽 芜湖 241000
Author(s):
Wang LeiShi Xin
College of Mechanical and Automotive Engineering,Anhui Polytechnic University,Wuhu 241000,China
关键词:
改进蚁群算法 移动机器人 局部路径规划 动态环境 栅格法 最优路径 凹型障碍
Keywords:
improved ant colony algorithm mobile robots local path planning dynamic environment grid method optimal path concave obstacles
分类号:
TP242
DOI:
10.14177/j.cnki.32-1397n.2019.43.06.005
摘要:
针对动态环境下的移动机器人最优路径问题,利用栅格法建模,提出1种改进蚁群算法。通过调整信息素启发因子和期望启发因子,自适应改变挥发系数。在路径规划时,提出相应的动态路径规划避障策略,使机器人在避障的同时得到最优或次优路径。实验结果表明,当机器人陷入凹型障碍并且在复杂环境搜索效率低的情况下,该文算法经过25代收敛找到最短路径; 改进算法比基本蚁群算法进化代数减少近50代,同时能有效避免移动机器人和动态障碍物碰撞,并且获得15.656的无碰路径。
Abstract:
Aiming at the shortest path searching problem of mobile robots in a dynamic environment,a path planning model is established using the grid method,and an improved ant colony algorithm is presented. The volatilization coefficient is changed adaptively by adjusting pheromone heuristic factors and expectation heuristic factors. In the path planning process,a corresponding dynamic path planning collision avoidance strategy is proposed to enable the robot to obtain the optimal or sub-optimal path and avoid obstacle simultaneously. The experimental results show that the improved algorithm needs 25 generations to achieve better convergence and find the shortest path when the robot is trapped in a concave obstacle with low search efficiency in a complex environment; the improved algorithm reduces by nearly 50 generations than the basic ant colony algorithm,and it can effectively avoid the collision between the mobile robot and dynamic obstacles,and obtain a 15.656 collision-free optimal path.

参考文献/References:

[1] 熊菡. 移动机器人全局路径规划及轨迹跟踪研究[D]. 武汉:武汉科技大学计算机科学与技术学院,2014.
[2]李明. 基于改进遗传算法的移动机器人路径规划研究[D]. 芜湖:安徽工程大学机械与汽车工程学院,2017.
[3]Azimirad V,Shorakaei H. Dual hierarchical genetic-optimal control:A new global optimal path planning method for robots[J]. Journal of Manufacturing Systems,2014,33(1):139-148.
[4]王雷,李明. 改进自适应遗传算法在移动机器人路径规划中的应用[J]. 南京理工大学学报,2017,41(5):627-633.
Wang Lei,Li Ming. Application of improved adaptive genetic algorithm in mobile robot path planning[J]. Journal of Nanjing University of Science and Technology,2017,41(5):627-633.
[5]Miao Hui,Tian Yuchu. Dynamic robot path planning using an enhanced simulated annealing approach[J]. Applied Mathematics & Computation,2013,222(5):420-437.
[6]Mac T T,Copot C,Tran D T,et al. A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J]. Applied Soft Computing,2017,59:68-76.
[7]陈莹,李影洁,朱思峰. 基于群智能算法的WSNs动态联盟任务协同[J]. 南京理工大学学报,2014,38(4):537-543.
Chen Ying,Li Yingjie,Zhu Sifeng. Dynamic alliance collaborative tasks of WSNs based on swarm intelligence algorithm[J]. Journal of Nanjing University of Science and Technology,2014,38(4):537-543.
[8]马文龙,王铮,赵燕伟. 基于改进蚁群算法的制造云服务组合优化[J]. 计算机集成制造系统,2016,22(1):113-121.
Ma Wenlong,Wang Zheng,Zhao Yanwei. Optimization services composition in cloud manufacturing based on improved ant colony algorithm[J]. Computer Integrated Manufacturing Systems,2016,22(1):113-121.
[9]万晓凤,胡伟,方武义,等. 基于改进蚁群算法的机器人路径规划研究[J]. 计算机工程与应用,2014,50(18):63-66.
Wan Xiaofeng,Hu Wei,Fang Wuyi,et al. Robot path planning based on improved ant colony algorithm[J]. Computer Engineering and Applications,2014,50(18):63-66.
[10]裴振兵,陈学波. 改进蚁群算法及其在机器人在避障中的应用[J]. 智能系统学报,2015,10(1):90-96.
Pei Zhenbing,Chen Xuebo. Improved ant colony algorithm and its application in obstacle avoidance of robot[J]. CAAI Transactions on Intelligent Systems,2015,10(1):90-96.
[11]柳长安,鄢小虎,刘春阳,等. 基于改进蚁群算法的移动机器人动态路径规划[J]. 电子学报,2011,39(5):1220-1224.
Liu Chang’an,Yan Xiaohu,Liu Chunyang,et al. Dynamic path planning of mobile robot based on improved ant colony algorithm[J]. Chinese Journal of Electronics,2011,39(5):1220-1224.
[12]Ding Yufeng,Pan Qian. Path planning for mobile robot search and rescue based on improved ant colony optimization algorithm[J]. Applied Mechanics and Materials,2011,1326(66):1039-1044.
[13]柯星. 动态环境下多移动机器人路径规划研究[D]. 成都:电子科技大学计算机科学与工程学院,2013.
[14]Yang S X,Meng M. An efficient neural network approach to dynamic robot motion planning[J]. Neural Networks,2000,13(2):143-148.
[15]黄立新,耿以才. 基于动态人工势场法移动机器人路径规划研究[J]. 计算机测量与控制,2017,25(2):164-166.
Huang Lixin,Geng Yicai. Research on path planning of mobile robot based on dynamic artificial potential field[J]. Computer Measurement and Control,2017,25(2):164-166.
[16]陈杰. 基于蚁群算法的机器人路径规划研究[D]. 南京:南京理工大学自动化学院,2009.

相似文献/References:

[1]赵娟平,高宪文,符秀辉.改进蚁群优化算法求解移动机器人路径规划问题[J].南京理工大学学报(自然科学版),2011,(05):637.
 ZHAO Juan-ping,GAO Xian-wen,FU Xiu-hui.Improved Ant Colony Optimization Algorithm for Solving Path Planning Problem of Mobile Robot[J].Journal of Nanjing University of Science and Technology,2011,(06):637.
[2]石杏喜,等.CUKF算法及其在移动机器人组合导航中的应用[J].南京理工大学学报(自然科学版),2009,(01):37.
 SHI Xing-xi,ZHAO Chun-xia,GUO Jian-hui.Algorithm of CUKF and Its Application to Mobile Robot Integrated Navigation[J].Journal of Nanjing University of Science and Technology,2009,(06):37.
[3]王 雷,李 明.改进自适应遗传算法在移动机器人路径规划中的应用[J].南京理工大学学报(自然科学版),2017,41(05):627.[doi:10.14177/j.cnki.32-1397n.2017.41.05.015]
 Wang Lei,Li Ming.Application of improved adaptive genetic algorithmin mobile robot path planning[J].Journal of Nanjing University of Science and Technology,2017,41(06):627.[doi:10.14177/j.cnki.32-1397n.2017.41.05.015]

备注/Memo

备注/Memo:
收稿日期:2018-10-31 修回日期:2019-04-15
基金项目:安徽省自然科学基金(1708085ME129); 安徽工程大学“中青年拔尖人才”培养计划
作者简介:王雷(1982-),男,博士,教授,主要研究方向:智能制造、作业车间优化调度等,E-mail:wangdalei2000@126.com。
引文格式:王雷,石鑫. 基于改进蚁群算法的移动机器人动态路径规划[J]. 南京理工大学学报,2019,43(6):700-707.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-12-31