[1]尹 芳,宋 垚,李 骜.基于局部优化奇异值分解和K-means聚类的协同过滤算法[J].南京理工大学学报(自然科学版),2019,43(06):720-726.[doi:10.14177/j.cnki.32-1397n.2019.43.06.008]
 Yin Fang,Song Yao,Li Ao.Collaborative filtering algorithm based on singular valuedecomposition of local optimization and K-means clustering[J].Journal of Nanjing University of Science and Technology,2019,43(06):720-726.[doi:10.14177/j.cnki.32-1397n.2019.43.06.008]
点击复制

基于局部优化奇异值分解和K-means聚类的协同过滤算法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
43卷
期数:
2019年06期
页码:
720-726
栏目:
出版日期:
2019-12-31

文章信息/Info

Title:
Collaborative filtering algorithm based on singular valuedecomposition of local optimization and K-means clustering
文章编号:
1005-9830(2019)06-0720-07
作者:
尹 芳宋 垚李 骜
哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080
Author(s):
Yin FangSong YaoLi Ao
School of Computer Science and Technology,Harbin University of Science andTechnology,Harbin 150080,China
关键词:
局部优化 奇异值分解 K-均值聚类 协同过滤 近似差分矩阵
Keywords:
local optimization singular value decomposition K-means clustering collaborative filtering approximate difference matrix
分类号:
TP391
DOI:
10.14177/j.cnki.32-1397n.2019.43.06.008
摘要:
为了克服传统协同过滤(CF)推荐方法数据稀疏和可扩展性差的不足,该文提出1种基于局部优化降维和聚类的协同过滤算法。采用局部优化的奇异值分解(SVD)降维技术和K-均值(K-means)聚类技术对用户-项目评分矩阵中的相似用户进行聚类并降低维度。利用近似差分矩阵表示评分矩阵的局部结构,实现局部优化。局部优化的SVD降维技术可以利用更少的迭代次数缓解CF中数据稀疏和算法可扩展性差的问题。K-means聚类技术可以缩小邻居集查找范围,提高推荐速度。将该文算法与基于Pearson相关系数的协同过滤算法、基于SVD的协同过滤算法、基于K-means聚类的协同过滤算法相比较。在MovieLens数据集上的实验结果表明,该算法的平均绝对误差(MAE)较其他算法降低了大约12%,准确性(Precision)提高了7%。
Abstract:
A collaborative filtering(CF)algorithm based on dimensionality reduction of local optimization and clustering is proposed for the data sparsity problem and poor scalability of traditional CF recommendation method. The locally optimized singular value decomposition(SVD)of matrix dimension reduction technique and the K-means clustering technique are used to reduce the dimensions and cluster similar users in a user-item scoring matrix. An approximate difference matrix is used to represent the local structure of the scoring matrix and implement the local optimization. The locally optimized SVD technique can alleviate the problem of data sparsity and poor scalability in CF by using fewer iterations. K-means clustering technique can narrow the search range of neighbor sets and improve the recommendation speed. This algorithm is compared with CF algorithms based on Pearson correlation coefficient,SVD,K-means clustering respectively. Experimental results on the MovieLens dataset show that the mean absolute error(MAE)of this algorithm is about 12% lower than those of other methods,and the precision is 7% higher.

参考文献/References:

[1] Kunaver M,PoAzˇrl T. Diversity in recommender systems—A survey[J]. Knowledge-Based Systems,2017,123(C):154-162.
[2]叶锡君,袁培森,郭小清,等. 基于用户兴趣和项目周期的协同过滤推荐算法[J]. 南京理工大学学报,2018,42(4):392-400.
Ye Xijun,Yuan Peisen,Guo Xiaoqing,et al. Collaborative filtering recommendation algorithm based on user interest and project cycle[J]. Journal of Nanjing University of Science and Technology,2018,42(4):392-400.
[3]Shu Jiangbo,Shen Xiaoxuan,Liu Hai,et al. A content-based recommendation algorithm for learning resources[J]. Multimedia Systems,2018,24(2):163-173.
[4]Wei Jian,He Jianhua,Chen Kai,et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications,2017,69(1):29-39.
[5]Fu Mingsheng,Qu Hong,Zhang Yi,et al. A novel deep learning-based collaborative filtering model for recommendation system[J]. IEEE Transactions on Cybernetics,2018,49(3):1-13.
[6]Javari A,Gharibshah J,Jalili M. Recommender systems based on collaborative filtering and resource allocation[J]. Social Network Analysis & Mining,2014,4(1):234.
[7]Kumar V,Pujari A K,Sahu S K,et al. Collaborative filtering using multiple binary maximum margin matrix factorizations[J]. Information Sciences,2017,380(C):1-11.
[8]Kim K,Ahn H. Recommender systems using cluster-indexing collaborative filtering and social data analytics[J]. International Journal of Production Research,2017,55(17):1-13.
[9]Koohi H,Kiani K. User based collaborative filtering using fuzzy C-means[J]. Measurement,2016,91(1):134-139.
[10]Le B H,Nguyen K Q,Thawonmas R. Bounded-SVD:A matrix factorization method with bound constraints for recommender systems[J]. Journal of Information Processing,2015,24(2):23-26.
[11]Zhang Jia,Lin Yaojin,Lin Menglei,et al. An effective collaborative filtering algorithm based on user preference clustering[J]. Applied Intelligence,2016,45(2):230-240.
[12]Lee O J,Hong M S,Jung J J,et al. Adaptive collaborative filtering based on scalable clustering for big recommender systems[J]. Acta Polytechnica Hungarica,2016,13(2):179-194.
[13]Symeonidis P,Zioupos A. Matrix and tensor factorization techniques for recommender systems[M]. Cham,Switzerland:Springer,2016:19-31.
[14]Guan Xin,Li Changtsun,Guan Yu. Matrix factorization with rating completion:An enhanced SVD model for collaborative filtering recommender systems[J]. IEEE Access,2017,5(99):27668-27678.
[15]Sarwar B,Karypis G,Konstan J,et al. Analysis of recommendation algorithms for E-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce. New Minneapolis,Minnesota,USA:ACM,2000:158-167.
[16]Tzortzis G,Likas A,Tzortzis G. The MinMax K-means clustering algorithm[J]. Pattern Recognition,2014,47(7):2505-2516.
[17]Pandey A,Pandey R. Elective recommendation support through K-means clustering using R-tool[C]//International Conference on Computational Intelligence and Communication Networks.Kolkata,India:ICRCICN,2016:851-856.
[18]Harper F M,Konstan J A. The MovieLens datasets:History and context[J]. ACM Transactions on Interactive Intelligent Systems,2015,5(4):1-19.
[19]Schafer J B,Dan F,Herlocker J,et al. Collaborative filtering recommender systems[J]. ACM Transactions on Information Systems,2004,22(1):5-53.
[20]杨善林,李永森,胡笑旋,等. K-means算法中的k值优化问题研究[J]. 系统工程理论与实践,2006,26(2):97-101.
Yang Shanlin,Li Yongsen,Hu Xiaoxuan,et al. Research on k-value optimization in K-means algorithm[J]. Systems Engineering Theory and Practice,2006,26(2):97-101.

相似文献/References:

[1]肖亮,叶建兵,韦志辉.一类基于SVD的数字水印虚警分析与改进算法[J].南京理工大学学报(自然科学版),2010,(02):227.
 XIAO Liang,YE Jian-bing,WEI Zhi-hui.Analysis of High False Alarm in SVD Based Watermarking and Improved Algorithm[J].Journal of Nanjing University of Science and Technology,2010,(06):227.
[2]李文亮,牟善祥,刘 峰.提高阵列雷达通道校正性能方法研究[J].南京理工大学学报(自然科学版),2014,38(02):271.
 Li Wenliang,Mu Shanxiang,Liu Feng.Method for improving array radar channel calibration performance[J].Journal of Nanjing University of Science and Technology,2014,38(06):271.
[3]曾文浩,朱晓华,李洪涛,等.基于矩阵填充的子阵重构二维波达方向估计算法[J].南京理工大学学报(自然科学版),2017,41(03):337.[doi:10.14177/j.cnki.32-1397n.2017.41.03.010]
 Zeng Wenhao,Zhu Xiaohua,Li Hongtao,et al.Subarray reconstruction 2D-DOA estimation algorithmbased on matrix completion[J].Journal of Nanjing University of Science and Technology,2017,41(06):337.[doi:10.14177/j.cnki.32-1397n.2017.41.03.010]

备注/Memo

备注/Memo:
收稿日期:2019-03-30 修回日期:2019-07-07
基金项目:黑龙江省青年创新人才项目(UNPYSCT-2018203); “理工英才"计划项目(LGYC2018JQ013); 黑龙江省自然科学基金(YQ2019F011)
作者简介:尹芳(1978-),女,博士,副教授,主要研究方向:机器学习、人工智能、模式识别、图像处理、推荐算法等,E-mail:13936421412@163.com。
引文格式:尹芳,宋垚,李骜. 基于局部优化奇异值分解和K-means聚类的协同过滤算法[J]. 南京理工大学学报,2019,43(6):720-726.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2019-12-31