[1]张 迁,丁建国.基于量子粒子群与标准粒子群混合算法的 框架结构异构体系模型参数辨识[J].南京理工大学学报(自然科学版),2020,44(02):177-184.[doi:10.14177/j.cnki.32-1397n.2020.44.02.008]
 Zhang Qian,Ding Jianguo.Parameter identification of frame structure heterogeneous system model based on hybrid quantum particle swarm and standard particle swarm algorithm[J].Journal of Nanjing University of Science and Technology,2020,44(02):177-184.[doi:10.14177/j.cnki.32-1397n.2020.44.02.008]
点击复制

基于量子粒子群与标准粒子群混合算法的 框架结构异构体系模型参数辨识
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年02期
页码:
177-184
栏目:
出版日期:
2020-04-30

文章信息/Info

Title:
Parameter identification of frame structure heterogeneous system model based on hybrid quantum particle swarm and standard particle swarm algorithm
文章编号:
1005-9830(2020)02-0177-08
作者:
张 迁丁建国
南京理工大学 理学院,江苏 南京 210094
Author(s):
Zhang QianDing Jianguo
School of Science,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
多体系统传递矩阵法 框架结构 力学模型 量子粒子群与标准粒子群混合算法 参数辨识
Keywords:
multibody system transfer matrix method frame structure mechanical model hybrid quantum particle swarm and standard particle swarm algorithm parameter identification
分类号:
TU311
DOI:
10.14177/j.cnki.32-1397n.2020.44.02.008
摘要:
为了研究相邻框架结构地震碰撞问题,经常将框架结构动力学模型简化为树形拓扑结构,以提高计算效率。该文提出了一种将量子粒子群与标准粒子群结合的参数辨识方法,基于结构的动力特性等效原则,对框架结构建立适应于多体系统传递矩阵法(MS-TMM)高效计算的树形拓扑系统动力学模型,模型的相关力学参数的确定是基于量子粒子群与标准粒子群混合算法,由有限元方法计算得到模态参数,通过参数辨识的方法来完成。为了验证所提出方法的有效性,以三层框架结构为工程算例,将三层框架结构转化为树形拓扑力学模型,通过提出的参数辨识方法和标准量子粒子群算法分别进行参数辨识,并将两种方法的辨识结果分别利用多体系统传递矩阵法(MS-TMM)计算频率,将频率计算结果分别与Ansys结果进行比较。结果表明,该文方法的识别精度优于标准量子粒子群算法。
Abstract:
In order to study the seismic collision problem of adjacent frame structures,the dynamic model of the frame structure is often simplified to a tree topology to improve its calculation efficiency. This paper proposes a parameter identification method that combines the quantum particle swarm and the standard particle swarm. Based on the principle of structural dynamic characteristic equivalence,the topological system dynamic model of the frame structure suitable for efficient calculation of the multibody system transfer matrix method(MS-TMM)is established. The relevant mechanical parameters of this dynamic model are calculated by the finite element method. The modal parameters are determined based on the parameter identification of the hydrid quantum particle swarm algorithm and the standard particle swarm algorithm. In this paper,a three-layer frame structure is used as an engineering example. The three-layer frame structure is transformed into a tree-topological mechanics model. The parameter identification method and standard quantum particle swarm algorithm proposed in this paper are used to identify the parameters. The multi-body system transfer matrix method(MS-TMM)is used to calculate the frequency,and the frequency calculation results of the two methods are compared with the frequencies calculated by the Ansys. The results show that the parameter identification method proposed in this paper is supperior to the standard quantum particle swarm algorithm in terms of identification accuracy.

参考文献/References:

[1] 李世光,孟凡涛,程建军,等. 基于改进量子粒子群算法的船舶配电网重构[J]. 中国科技论文,2018,13(11):1304-1308.
Li Shiguang,Meng Fantao,Cheng Jianjun,et al. Ship distribution network reconstruction based on improved quantum particle swarm optimization algorithm[J]. Chinese Science and Technology Paper,2018,13(11):1304-1308.
[2]谢源,李琼,陈杰,等. 基于改进的量子粒子群算法的变差函数拟合方法及应用[J]. 成都理工大学学报(自然科学版),2018,45(3):379-385.
Xie Yuan,Li Qiong,Chen Jie,et al. Variation function fitting method and application based on improved quantum particle swarm optimization algorithm[J]. Journal of Chengdu University of Technology(Natural Science Edition),2018,45(3):379-385.
[3]李盼池,王海英,宋考平,等. 量子势阱粒子群优化算法的改进研究[J]. 物理学报,2012,61(6):19-28.
Li Panchi,Wang Haiying,Song Kaoping,et al. Improved particle swarm optimization algorithm for quantum potential wells[J]. Acta Physica Sinica,2012,61(6):19-28.
[4]徐珊珊,金玉华,张庆兵. 带全局判据的改进量子粒子群优化算法[J]. 系统工程与电子技术,2018,40(9):2131-2137.
Xu Shanshan,Jin Yuhua,Zhang Qingbing. Improved quantum particle swarm optimization algorithm with global criteria[J]. System Engineering and Electronics,2018,40(9):2131-2137.
[5]郭蕴华,王晓宗. 基于改进量子粒子群算法的无人机路径规划[J]. 船海工程,2016,45(1):99-102.
Guo Yunhua,Wang Xiaozong. Path planning for UAV based on improved quantum particle swarm optimization algorithm[J]. Ship & Ocean Engineering,2016,45(1):99-102.
[6]彭广,方洋旺,张磊,等. 一种改进的量子粒子群算法[J]. 火力与指挥控制,2016,41(7):92-96.
Peng Guang,Fang Yangwang,Zhang Lei,et al. An improved quantum particle swarm optimization algorithm[J]. Fire and Command Control,2016,41(7):92-96.
[7]陈功贵,黄山外,孙智,等. 基于改进量子粒子群算法的电力系统经济调度仿真研究[J]. 实验技术与管理,2017(3):104-107.
Chen Gonggui,Huang Shanwai,Sun Zhi,et al. Simulation study on economic scheduling of power system based on improved quantum particle swarm optimization algorithm[J]. Experimental Technology and Management,2017(3):104-107.
[8]黄丽,彭道刚,顾立群,等. 基于改进量子粒子群算法负荷优化分配研究[J]. 控制工程,2017,24(7):1402-1408.
Huang Li,Peng Daogang,Gu Liqun,et al. Research on load optimization distribution based on improved quantum particle swarm optimization algorithm[J]. Control Engineering,2017,24(7):1402-1408.
[9]胡皞,邵永亮,常军. 改进QPSO算法识别结构模态参数[J]. 噪声与振动控制,2017,37(3):82-87.
Hu Hao,Shao Yongliang,Chang Jun. Improved QPSO algorithm to identify structural modal parameters[J]. Noise and Vibration Control,2017,37(3):82-87.
[10]李建平,宫耀华,卢爱平,等. 改进的粒子群算法及在数值函数优化中应用[J]. 重庆大学学报,2017,40(5):95-103.
Li Jianping,Gong Yaohua,Lu Aiping,et al. Application of improved particle swarm optimization to numerical function optimization[J]. Journal of Chongqing University,2017,40(5):95-103.
[11]冯仲恺,廖胜利,牛文静,等. 改进量子粒子群算法在水电站群优化调度中的应用[J]. 水科学进展,2015,26(3):413-422.
Feng Zhongkai,Liao Shengli,Niu Wenjing,et al. Application of improved quantum particle swarm optimization algorithm in optimal operation of hydropower stations[J]. Advances in Water Science,2015,26(3):413-422.
[12]赵莉. 基于改进量子粒子群算法的云计算资源调度[J]. 南京理工大学学报,2016,40(2):223-228.
Zhao Li. Cloud computing resource scheduling based on improved quantum particle swarm optimization algorithm[J]. Journal of Nanjing University of Science and Technology,2016,40(2):223-228.
[13]芮筱亭. 多体系统传递矩阵法及其应用[M]. 北京:科学出版社,2008.
[14]包子阳. 智能优化算法及其MATLAB实例[M]. 北京; 电子工业出版社,2018.
[15]Sun Jun,Xu Wenbo,Fang Bin. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[J]. Proceedings of IEEE International Conference on System,2005(4):3049-3054.
[16]Sun Jun,Xu Wenbo,Fang Wei. Quantun-behaved particle swarm optimization with a hybrid probability distribution[J]. Pricai Trends in Artificial Intelligence,2006,4099:737-746.
[17]常鹏,杨娜,张国培,等. 多分辨率分析和小波能量曲率的框架结构损伤识别[J]. 哈尔滨工业大学学报,2016,48(6):170-176.
Chang Peng,Yang Na,Zhang Guopei,et al. Damage identification of frame structures based on multi-resolution analysis and wavelet energy curvature[J]. Journal of Harbin Institute of Technology,2016,48(6):170-176.
[18]徐珂. ANSYS建筑结构分析应用[M]. 北京:中国建筑工业出版社,2013.

相似文献/References:

[1]闫志浩,左晓宝.简谐激振作用下框架结构刚度识别[J].南京理工大学学报(自然科学版),2005,(01):102.
 YAN Zhi-hao,ZUO Xiao-bao.Stiffness Identification of Frame Structures under Simple Harmonic Excitation[J].Journal of Nanjing University of Science and Technology,2005,(02):102.
[2]徐汉忠,周兰庭.三跨刚架弯矩分配传递无限次的闭合解[J].南京理工大学学报(自然科学版),2001,(04):412.
 XuHanzhong ZhouLanting.Closed Solutions of Rigid Frames with 3 Spans by Summing up Distributed and Carried over Moments Infinitely[J].Journal of Nanjing University of Science and Technology,2001,(02):412.
[3]张 驰,芮筱亭,戎 保,等.提高机载多管火箭射击密集度方法研究[J].南京理工大学学报(自然科学版),2013,37(02):233.
 Zhang Chi,Rui Xiaoting,Rong Bao,et al.Method to improve firing dispersion of airborne multiple launch rocket systems[J].Journal of Nanjing University of Science and Technology,2013,37(02):233.

备注/Memo

备注/Memo:
收稿日期:2019-11-10 修回日期:2020-02-10
基金项目:国家自然科学基金(1197020843)
作者简介:张迁(1994-),男,硕士生,主要研究方向:防震减灾与防护工程,E-mail:9769387@qq.com; 通讯作者:丁建国(1962-),男,教授,博士生导师,主要研究方向:工程结构稳定性,防震减灾工程,E-mail:nustdjg@yahoo.com.cn。
引文格式:张迁,丁建国. 基于量子粒子群与标准粒子群混合算法的框架结构异构体系模型参数辨识[J]. 南京理工大学学报,2020,44(2):177-184.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-04-20