[1]班晓征,李志华.一种自适应加权欠采样图像重建算法[J].南京理工大学学报(自然科学版),2020,44(02):209-215.[doi:10.14177/j.cnki.32-1397n.2020.44.02.012]
 Ban Xiaozheng,Li Zhihua.Adaptive weighted undersampling image reconstruction algorithm[J].Journal of Nanjing University of Science and Technology,2020,44(02):209-215.[doi:10.14177/j.cnki.32-1397n.2020.44.02.012]
点击复制

一种自适应加权欠采样图像重建算法
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年02期
页码:
209-215
栏目:
出版日期:
2020-04-30

文章信息/Info

Title:
Adaptive weighted undersampling image reconstruction algorithm
文章编号:
1005-9830(2020)02-0209-07
作者:
班晓征李志华
江南大学 物联网工程学院,江苏 无锡 214122
Author(s):
Ban XiaozhengLi Zhihua
School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China
关键词:
压缩感知 图像重建 迭代支集检测 自适应加权
Keywords:
compressed sensing image reconstruction iterative support detection adaptive weighted
分类号:
TP393
DOI:
10.14177/j.cnki.32-1397n.2020.44.02.012
摘要:
针对欠采样图像重建中容易对噪声敏感且出现伪影的问题,构建了结合离散小波和TV的双正则化图像重建模型,基于该模型进一步提出了一种自适应加权迭代图像重建算法。该算法在每次迭代中通过阈值收缩方法依次计算TV正则项与小波系数先验项,更新重建图像。同时为了进一步提升重建图像的质量,引入迭代支集检测方法计算小波系数的自适应权重。实验结果表明,与其他算法相比,该文算法具有更好的时间效率和重建质量。
Abstract:
Aiming at the problem that TV regularized image reconstruction is easy to be sensitive to noise and artifacts in under-sampling environment,a dual regularized adaptive weighted image reconstruction model combining the discrete wavelet and the TV is constructed. Based on this model,an adaptive weighted iterative reconstruction algorithm is proposed. In each iteration,the algorithm calculates the TV regularization term and the wavelet coefficient prior term by the threshold shrinkage method,and then updates the reconstructed image. In order to improve the quality of the reconstructed image,an iterative support detection method is introduced to calculate the adaptive weight of the wavelet coefficient. The experimental results show that the proposed algorithm can achieve better overall performance in terms of time efficiency and reconstruction quality than other similar algorithms.

参考文献/References:

[1] Zhang Qingshen, Lv Xiaoxu,Yu Qingting,et al. A new method of aperture synthetizing in digital holography[J]. Chinese Physics B,2009,18(7):2764-2768.
[2]Smith B D. Image reconstruction from cone-beam projections:Necessary and sufficient conditions and reconstruction methods[J]. IEEE Transactions on Medical Imaging,1985,4(1):14-25.
[3]Han Y S,Yoo J,Ye J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. ArXiv:1611.06391,2016.
[4]Jin K H,Mccann M T,Froustey E,et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing,2017,26(9):4509-4522.
[5]任越美,张艳宁,李映.压缩感知及其图像处理应用研究进展与展望[J]. 自动化学报,2014,40(8):1563-1575.
Ren Yuemei,Zhang Yanning,Li Ying. Advances and perspective on compressed sensing and application on image processing[J]. Acta Automatica Sinia,2014,40(8):1563-1575.
[6]Yu Hengyong,Wang Ge. A soft-threshold filtering approach for reconstruction from a limited number of projections[J]. Physics in Medicine & Biology,2010,55(13):3905-3916.
[7]刘石,雷兢,李志宏. 基于改进正则法的ECT图像重建算法[J]. 仪器仪表学报,2007,28(11):1977-1981.
Liu Shi,Lei Jing,Li Zhihong. Image reconstruction algorithm for ECT based on modified regularization method[J]. Chinese Journal of Scientific Instrument,2007,28(11):1977-1981.
[8]徐敏达,李志华. 基于L1与TV正则化的改进图像重建算法[J]. 计算机科学,2018,45(12):217-223.
Xu Minda,Li Zhihua. Improved image reconstruction algorithm based on L1-norm and TV 4egularization[J]. Computer Science,2018,45(12):217-223.
[9]Ke L,Zhang R. Multiscale wiener filtering method for low-dose CT images[C]//International Conference on Biomedical Engineering & Informatics. Yantai,China:IEEE,2010:428-431.
[10]Wang Y,Yin W. Sparse signal reconstruction via iterative support detection[J]. Siam Journal on Imaging Sciences,2009,3(3):462-491.
[11]Shi H,Luo S. A novel scheme to design the filter for CT reconstruction using FBP algorithm[J]. BioMedical Engineering On Line,2013,12(1):50-50.
[12]Flores L,Vidal V,Parcero E,et al. Application of a modified LSQR method for CT imaging reconstruction with low doses to patient[C]//2016 9th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics(CISP-BMEI). DOI:10.1119/cisp-bmei.2016.785-3041.
[13]康慧,高红霞,胡跃明,等. 基于Bregman迭代的CT图像重建算法[J]. 自动化学报,2013,39(9):1570-1575.
Kang Hui,Gao Hongxia,Hu Yueming,et al. Reconstruction algorithm based on bregman iteration[J]. Acta Automatica Sinica,2013,39(9):1570-1575.
[14]丁绪星,朱日宏,李建欣. 一种静止图像质量评价指标[J]. 南京理工大学学报,2004,28(5):507-510.
Ding Xuxing,Zhu Rihong,Li Jianxin. Image quality assessment index for still image[J]. Journal of Nanjing University of Science and Technology,2004,28(5):507-510.

相似文献/References:

[1]李洪涛,贺亚鹏,顾陈,等.基于压缩感知的单快拍自适应波束形成算法[J].南京理工大学学报(自然科学版),2012,36(01):91.
 LI Hong-tao,HE Ya-peng,GU Cheng,et al.Compressive Sensing Based Single-snapshot Adaptive Beamforming Algorithm[J].Journal of Nanjing University of Science and Technology,2012,36(02):91.
[2]李星秀,韦志辉,肖亮.基于稀疏支撑集先验的压缩感知图像序列重建算法[J].南京理工大学学报(自然科学版),2012,36(06):0.
 LI Xing xiu,WEI Zhi hui,XIAO Liang.Compressed Sensing Image Sequence Reconstruction Algorithm Based on Sparse Support Prior[J].Journal of Nanjing University of Science and Technology,2012,36(02):0.
[3]李晖晖,曾 艳,杨 宁,等.改进的压缩感知重构算法及其在图像融合中的应用[J].南京理工大学学报(自然科学版),2014,38(02):259.
 Li Huihui,Zeng Yan,Yang Ning,et al.Improved compressed sensing reconstruction algorithm and its application in image fusion[J].Journal of Nanjing University of Science and Technology,2014,38(02):259.
[4]刘 曦,侯保林,姚来鹏.基于压缩感知的弹药自动装填系统数据采集方法[J].南京理工大学学报(自然科学版),2016,40(05):544.[doi:10.14177/j.cnki.32-1397n.2016.40.05.007]
 Liu Xi,Hou Baolin,Yao Laipeng.Data acquisition method based on compressive sensing for automatic ammunition loading system[J].Journal of Nanjing University of Science and Technology,2016,40(02):544.[doi:10.14177/j.cnki.32-1397n.2016.40.05.007]
[5]严 郁a,朱 伟a,蔡润秋a,等.基于超声射频信号的乳腺肿瘤分级算法研究[J].南京理工大学学报(自然科学版),2018,42(04):385.[doi:10.14177/j.cnki.32-1397n.2018.42.04.001]
 Yan Yua,Zhu Weia,Cai Runqiua,et al.Breast tumor classification algorithm based on ultrasoundradio frequency signal[J].Journal of Nanjing University of Science and Technology,2018,42(02):385.[doi:10.14177/j.cnki.32-1397n.2018.42.04.001]

备注/Memo

备注/Memo:
收稿日期:2019-04-18 修回日期:2019-06-06
基金项目:工业和信息化部智能制造项目(ZH-XZ-180004); 江苏省科技厅产学研前瞻项目(BY2013015-23); 111基地建设项目(B2018)
作者简介:班晓征(1994-),女,硕士生,主要研究方向:层析成像、图像重建,E-mail:Ban_xz@163.com; 通讯作者:李志华(1969-),男,副教授,主要研究方向:网络技术、信息安全、图像处理等,E-mail:jswxzhli@aliyun.com。
引文格式:班晓征,李志华. 一种自适应加权欠采样图像重建算法[J]. 南京理工大学学报,2020,44(2):209-215.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-04-20